
 Cover Page

Peek N' Poke Manual
Version 1.0 - Released Oct 26, 2000
Version 1.21 - February 15, 2002

Important Note:

Note, where necessary:
 '/' replaces a 'division' sign
 'x' replaces a multiplication sign

This manual was originally written for the first version of Bally BASIC (the
cartridge that requires the joystick port cables). However, almost everything
in here is still applicable to the second version of Bally BASIC (the cartridge
with the built-in microphone jack-- also referred to as Astro BASIC). The
onboard calculator routine ($) referred to on page 12, has been removed from
AstroBasic. Ignore any reference to this original Bally BASIC command. Also,
Critter is written for use with the 300 baud BASIC.

Lines wrapping?
 This text was written to display properly using a mono-spaced font and at
least 80 columns. To avoid wrap-around and make the appearance of this file
readable try this:
 - Change the font to a mono-spaced font (Courier New)
 - Reduce the font-size of the listing
 - Reduce the left and right margins

PEEK N'POKE

FRED CORNETT
MANAGING EDITOR
THE CURSOR GROUP

Copyright 1980 by THE CURSOR GROUP

All rights reserved, including the
right to reproduce this manual or
portions thereof in any form whatsoever
without permission in writing from the
publisher/author.

AstroBasic, please contact me so that I can make note of it.

Page 0

This page intentionally left blank for double-sided printing purposes.

 Page 1

PEEK n' POKE

Written by: FRED CORNETT
The Cursor Group

 There has been a great deal of confusion as to exactly what PEEK n' POKE
around what they do.
 Your computer consists of many thousands of simple circuits that are capable
of registering their state (or condition). That state can only be one of two
conditions: ON or OFF. The computer is capable of checking the status of any
individual bit of memory location. A byte is one memory location. A byte is
composed of 8 bits. The computer uses symbol substitution to communicate with
you. If any particular bit is turned 'ON' it substitutes a "1", if it is 'OFF',
a 0 is substituted. A program is a set of instructions that is placed in memory
by a set pattern of one's and zero's. This is the language your computer
understands. It is called "BINARY."
 If we had to input our programs in one's and zero's, it would be very
difficult and take forever. So, there is an intermediate language called
"Assembly Language." Each type of CPU (Central Processing Unit) chip speaks a
different language. Our CPU chip is a Z80. The instructions we give our Z80
are called "Mnemonics". These mnemonics are an abbreviation of assembly
language. Assembly language exists only for the convenience of the programmer,
who can look at a program on paper and understand the logic flow.
 For a computer to understand assembly language, it must have a program
called an assembler. Our computer does not. So for us to force an assembly
language program into our computer, we must buy a book that translates Z80
mnemonics into "OP Code."
 An "OP Code" is our instruction which has been coded into a hexadecimal
number (Base 16). Decimal numbers are Base 10, binary is Base 2, and OP Code
(Hex) is Base 16. A book of Z80 OP Codes may be purchased in most any computer
store.

Page 2

 Hold on, you aren't done yet! Remember, our computer does not have an
assembler, so it can't understand our "OP Code" instructions (Hex) until we
convert them to decimal.
 The average computer newcomer is at this moment muttering "To heck with it!"
Why bother you ask? As you know, "BALLY BASIC" is somewhat limited, machine
language is not! Stick with us, we have one more major problem to solve.
 OK, we've written an assembly language program, converted that to mnemonics
and OP Code. So how in the world do we get it into the computer? Well, it's
been hard up till now, but the good person who wrote 'Tiny Basic' (Mr. Jay
Fenton) must have liked us, because he gave us three very powerful commands:
PEEK, POKE, and CALL. (Be thankful for these commands, many manufacturers don't
give them to their users).
 "PEEK" is a command that lets you look at any specific memory address and
find out what is stored there. In our February 1980 issue, page 14, we printed
a 'Bally Memory Map'; use this map to find memory locations. NOTE: 'PEEK'
ACCESSES MEMORY 2 BYTES AT A TIME. Memory is normally accessed one byte at a
time, but Bally pulled some dirty tricks which has had some good results and
some bad results. For example: key in the following one line program

 10 A=26 "DO NOT HIT RUN"

 BALLY TEXT AREA: -24576 TO -22777

Lets use the 'PEEK' command to see how the program is stored.
 The area where your Basic Program is stored is called the "Bally Text Area"
and starts at -24576 and decrements by two's to -22777. Hence, the beginning of
our program should be at location -24576. INPUT the following one line program
without a line and press "GO":

 PRINT %(-24576)

 Page 3

 Your computer has printed "10". Remember, all line numbers occupy 2 bytes
regardless of size of line #. When we use 'PEEK', we are addressing 2 bytes at
a time.
 Let's try finding the rest of the program. INPUT the following one line
program without a line #.

 PRINT %(-24574)

Your computer has printed "15681."
 What in the world is that? We told you that we are 'PEEKING' 2 bytes at a
time, so now we must separate the 2 bytes from each other.
 When the computer stored your program initially, it pulled a dirty trick.
It multiplied the second characters ASCII Code time 256 and added the first
characters ASCII Code to the total and 'POKED' it in together.
 Referring to the ASCII Conversion Chart in our June issue, page 39, ASCII
Code for "A" is 65; the ASCII Code for "=" is 61. Lets see if this works out:
256 x 61= 15616 + 65= 15681, which is what our computer printed out when we told
it to "PRINT %(-24574)." You can check this on your computer by keying in the
following without a line #:

 X=%(-24574)/256;TV=RM;TV=X

RM is a variable that contains the remainder, if any, of any division problem.
 The computer will now print our "A=". So far, we have found that location -
24576 contained the line number (10) and location -24574 has stored "A=". Using
the same procedure, lets look at the next location. Key in the following one
line program without a line # and press "Go":

 PRINT %(-24572)

Your computer will print "13874". Let's convert that by our division method:

 X=%(-24572)/256;PRINT RM,X

Page 4

 The computer will print "50 54". These are the next two characters stored
using ASCII Codes. Using our ASCII Chart, page 39, of the June issue: '50'=2,
'54'=6. So, now we have found "10 A=26". I'll bet you think we are done, we
aren't! What is the last thing we do on a line? We hit "GO." This is always
stored at the end of each line. Let's look at the next location -24570. Key in
the following one line program without a line # and press "GO":

 PRINT %(-24570)

Your computer will print '13'. Checking our ASCII Chart we find '13=GO'. Now
we have the complete program: 10 A=26.
 We are now in a better position of understanding how many bytes our programs
use:

 LINE # occupies 2 bytes '2' occupies 1 byte
 'A' occupies 1 byte '6' occupies 1 byte
 '=' occupies 1 byte 'GO' occupies 1 byte

 TOTAL : 7 bytes

 If you have not "RUN" the program and you key in "PRINT A" and press "GO",
the computer will print '0'. Now, RUN the program. Key in "PRINT A" and press
"GO" and the computer will print '26'.
 Let's look again at the memory map on page 14 of the February issue. We
find that variable locations begin at 20078, and since we know that all
variables use 2 bytes, we are able to ascertain the memory locations for all of
the variables: A=20078 - add two bytes, B=20080 - add two bytes, and C=20082,
etc...
 Changing a variable is pretty easy, as in the case of our LINE l0 program.
When you key in A=26 (and hit RUN) the computer goes to location 20078 and
places "26" in that location. The "BASIC" is acting as an interpreter between
us and the computer. Let's eliminate the middleman and do it ourselves! Key in
this:

 Page 5

 %(20078)=40 Press "GO"

 Now key in "PRINT A", press 'GO'. The computer will print out '40'.
"%(20078)=40" is a "POKE Command." It allows us to "POKE" our own information
directly into a computer location without using the "BASIC" interpreter. Do you
remember the Music in our March issue, or "Connect Four" in the August issue?
Both of those programs made HEAVY use of "PEEK n' POKE."
 OK fine, this is interesting and cute, but why use it? Lets look at the
following example. Key in the following one line program:

 10 A=22104;B=6109;C=19867;D=-4107;E=9987;F=-31063

 Hit "Go" and key in PRINT SZ. This took up 49 bytes. All we wanted to do
is store 6 numbers. Since we only have 1800 bytes, we should use as economical
a method as possible. The cheapest way of doing this is by using a "REM
Statement."

 10.1234567890123

 Why did we add 14 numbers after the period? Let's figure it out. We are
going to store six large numbers. Each of these numbers will require a 2 byte
location for storage. In the previously explained process, we learned that the
computer stores 2 different ASCII Codes in one 2 byte location, so we multiply 2
x 6 and get 12 ASCII characters. Now, we cannot 'POKE' into the line number
location, which is -24576, or the location where the period (.) is -24574. Even
though the period occupies only one byte, we have to fill in that location with
another ASCII character (which we won't use) -- then reserve 12 bytes (for 6
numbers).

 Memory Location Value Comment
 --------------- ----- -------
 -24576 10 LINE # (don't POKE)
 -24574 .1 REM (don't POKE)
 -24572 23 Value 22104
 -24570 45 Value 6109
 -24568 67 Value 19867
 -24566 89 Value -4107
 -24564 01 Value 9987
 -24562 23 Value -31063
 -24560 "GO" is stored here

Page 6

 INPUT the following line: 10 .1234567890123
 Now INPUT the following program without a line number:

 FOR A=-24572TO-24562STEP 2;INPUT %(A);NEXT A

 The computer will print "%(A)" and wait! It is waiting for you to INPUT the
6 values, pressing "GO" after each one: 22104, 6109, 19867, -4107, 9987, -31063.
After you have done this, key in 'LIST'. The computer will print:

 10 .1XV???M???'??

 The reason the computer printed garbage in LINE 10 is; it is dividing by 256
and printing the result of an ASCII Code. Whenever an ASCII Code is not a
standard ASCII Character, our computer prints '?'.
 To make sure we really have "POKED" those 6 values into LINE 10, lets "PEEK"
at them. INPUT this one line program without a line # and hit "GO":

 FOR A=-24572TO-24562STEP 2;PRINT %(A);NEXT A

 The computer will print:

 22104 6109 19867 -4107 9987 -31063

 Remember when we used the old method of storing this info: A=22104; B=6109;
etc? When we keyed in "PRINT SZ" it printed "1751", which means the old way
took up 49 bytes. NOW key in "PRINT SZ". The computer will print "1783". A
savings of 32 bytes (and we are only using 6 numbers). Think of the saving if
you had 100 numbers!
 I generally find myself in a high state of agitation with people who gripe a
lot about things they can't change. As an American, I have found that the best
way to beat the system is not to became an anarchist and destroy it, but to work
within the system and get it to work for you! This can be beautifully applied
to the "BALLY." An example:
 Many of us have been frustrated at the 'apparent' inability of our "BALLY"

 Page 7

to store decimal formatted numbers (i.e., $127.10) in one variable or location.
We have learned in this tutorial that 2 ASCII Codes can be stored in one 2 byte
location and yet be separated by multiplying one of them by 256 (x256) and
adding the other to the total.
 We have one limitation. ALL VALUES MUST FALL BETWEEN 32767 and -32767.
Suppose we are trying to put a checkbook program together and we want to store
dollars and cents as one value in string variables.
 Using the logic that Jay Fenton used in storing two characters in one
location, lets pull our own dirty trick. INPUT the following program:

 10 INPUT D,C
 20 T=Dxl00+C
 30 PRINT #1,T,"+$",T/100,".",RM

 Now RUN this program. When the computer prints "D" INPUT 127; when the
computer prints "C" INPUT 10. The computer will now print:

 12710=$127.10

 What we are doing is this: D=Dollars, C=Cents. We are multiplying Dx100 and
adding "C" to it to create "T" (for Total). What we have done is store Dollars
and Cents in one variable, which could just as easily have been one string
variable (@(1)) or one memory location.
 To get the amount back out, we divide the total "T" by 100, which will give
us Dollars and we get the Cents amount from the variable "RM". Easy isn't it?
 Remember the limitation we spoke of? We cannot use any values larger than
32767, which in our case boils down to $327.67. That wouldn't have been much of
a drawback in 1955 but it sure is now. Let's play some dirty tricks of our own.
Key in the following program:

Page 8

 10 INPUT D,C
 20 IF D>326D=D-326;T=Dx100+C;T=(-T);GOTO 40
 30 T=Dx100+C
 40 PRINT T
 50 IF T#ABS(T)T=ABS(T);D=T/100+326;C=RM;GOTO 700
 60 D=T/100;C=RM
 70 PRINT #l,"$",D,".",C

 Now we can handle any amount LOWER than $653.68. I don't find this much of
a limitation; if we were writing a checkbook program, I doubt if many of us
would write more than one or two checks exceeding $653.67 per month. Whenever
we need to write an amount for more than that, just break it into two checks
instead of one. Let's go through that program step-by-step:

 LINE 10: If dollar amount (D) is larger than 326, subtract 326
 from dollar (D) amount. Total (T) equals dollar (D)
 amount multiplied by 100 and add cent (C) amount. Set
 a flag to notify computer that this amount is more than
 $326 by making the total (T) negative (-T). Skip
 line 30.

 LINE 30: If dollar amount is less than $327 total, (T) equals
 equals dollar amount (D) times 100 plus cent amount (C).

This ends the INPUT portion of the program.

 LINE 50: If the total (T) is a negative (-) number, change it to
 positive (+). Dollar amount (D) will equal total (T)
 divided by 100 and restore (add) 326 to it. (This is
 how we get back the 326 we subtracted in line 20). Cents
 amount becomes the remainder (RM) left over after
 dividing by 100. Skips line 60.

 Page 9

 LINE 60: If total (T) was not negative (meaning over $326
 originally), dollar amount (D) equals total (T) divided
 by 100. Cent amount (C) equals remainder (RM) left
 over after division.

 LINE 70: The "#1" used in this print statement is a tab function
 telling the computer how many spaces to place between
 the separate types of print. For 3 spaces we would
 have used "#3".

 Let's look at alternate ways of storing our check information. Since this is
a "Peek n' Poke Manual" lets do just that!
 Remember the earlier exercise which uses a "REM" Statement? Since our BASIC
does not allow 'DATA' Statements, we have to create our own. This is what we
did with our "Three Voice Music Assembler", VOL 1, Issue #3 (March), and also
the "Connect Four", VOL II, Issue #1 (August). This is a far more stable way to
store data than in the string arrays. Also, it is very easy to store on tape.
 Let's say we want to store 10 check amounts. INPUT the following changes to
the preceding program:

 2 .1234567890l23456789012
 5 CLEAR;FOR P=-23572TO-24554STEP 2
 40 %(P)=T;NEXT P
 42 FOR P=-24572TO-24554STEP 2
 45 T=%(P)
 80 NEXT P

 Now you can store 10 check in line #8. RUN the program and input 10
different dollar and cent values. If you want to reprint the values of these
checks after the program has been run, key in GOTO 42 and hit "GO".

Page 10

 If we wanted to view the checks individually, we would make the following
changes:

 42 CLEAR;INPUT "WHAT CHECK # DO YOU WISH TO SEE?(1-10) "N
 45 T=%(Nx2+(-24574))
 70 PRINT #1,"CHECK #",N,"=$",D,".",C
 80 FOR Z=lTO 2000;NEXT Z;GOTO 42

 Now, to view a particular check, you input the number between 1 and 10.
The key here is in Line 45, which is doing the following:

 Whenever you want to add to a negative number you decrement
 it: TOTAL = (-24574) PLUS 2 TIMES the number of the check.
 If we wanted Check #2 its memory location would be: -24574 +
 2xN or -24570. Our first memory location that we can use on
 Line #5 is -24572, the second would be -24570. See, it all
 checks out. (LINE 80 is merely a timing loop).

 Now, lets add a few lines that will give us a total of all the checks:

 42 X=0;Y=0;FOR P=-24572TO-24554STEP 2
 45 T=%(P)
 70 X=X+D;Y=Y+C;PRINT #1,"$",D,".",C
 80 NEXT P
 90 IF Y>99X=X+Y/100;Y=RM
 100 PRINT #1,"TOTAL=$",X,".",Y

 Since the computer is not aware of the difference between dollars and cents
we must supply a way of adding these items separately. We also need a way of
correcting the dollar and cent totals if the cent total exceeds 99.

 LINE 42: Let X=Total Dollar Counter; Let Y=Total Cent
 Counter

 LINE 70: Add the individual check amounts (D and C) to the

 Page 11

 total counters (X and Y)

 LINE 90: If total cents (Y) exceeds 99, divide total cents (Y)
 by 100 and add this to total dollar counter (X). Let
 total cents (Y) be the remainder (RM) of that division.

 You could also establish 'Payee Codes' and store the 'Payee Names' in a REM
Line. Also, the complete date could be stored in one location: 12/31/1980 would
be 12310 (using only the last digit of the year). REMEMBER: get as much mileage
as possible out of each memory location.
 EXAMPLE: We would need to know if an individual check has been reconciled
with our statement. The easiest way to handle that would be to make the date a
negative number if the check has been reconciled.
 I would also make the payee code number location contain the tax code. All
of this would not use too much memory:

 AMOUNT = 2 bytes
 DATE/RECONCILE = 2 bytes
 PAYEE CODE/TAX STATUS = 2 bytes

That's only a total of 6 bytes per check.

Page 12

MACHINE LANGUAGE

 This manual is not intended as a course in Z80 Machine Language or Assembly
Language. To write a decent machine language course would occupy the better
part of a year, and subsequently because of its limited appeal to the average
Bally user be priced totally beyond the value of the information contained.
 There are numerous excellent paperback books written on that subject.
Cursor does recommend the following books which may be purchased locally at a
computer store.

 Z-80 and 8080 Assembly Language Programming by Kathe
 Spracklen, published by Hayden (ISBN 0-8104-5167-0);
 Library of Congress Catalog Card Number 79-65355 for
 approximately $8.95.

 Z80 Instruction Book by Nat Wadsworth, published by
 SCELBI Publications for approximately $4.95.

 We strongly suggest you purchase both of these books! If they
are not available locally, contact: OPAMP/TECHNICAL, 1033 North Sycamore Ave.,
Hollywood, CA 90038. Telephone: (213)464-4322 for mail order service.
 The purpose of this portion of the manual is too acquaint you with the
methods required by the Bally for you to utilize your own machine language
routines. To utilize user-supplied routines you must adhere to several rigid
rules, the most important of which is:
 A MACHINE LANGUAGE PROGRAM THAT IS USED IN CONJUNCTION WITH THE BALLY BASIC
CARTRIDGE MUST BE STORED IN A LOCATION THAT WILL NOT INTERFERE WITH THE BASIC
TEXT! If we were to store a machine language program in the text area (-24576
thru -22777), the BASIC Language would attempt to interpret our machine code as
BASIC, thereby driving you crazy with "What and How" messages. Therefore, you
must find locations that will not interfere.
 The easiest to use are the "Tape Input Buffer" (20002 - 20049) and the "Line
Input Buffer" (20180 - 20283). There is also an 18 byte area (20144 - 20161)
that can be utilized as long as you are not using the OnBoard Calculator routine
($).
 Slightly more difficult to use would be the "Screen Memory Area" (16384 -
20479). The problem with this area is that graphics and text concurrently
occupy

 Page 13

the locations. Remember the "CRITTER" program in the October 1980 issue of
Cursor? When you ran that program you had an area at the bottom of the screen
that was twinkling. That was where the Machine language program was stored
(19584 thru 19880). This works great, but you cannot put any graphics or text
in the same area. That is why you had to keep the Cursor from scrolling down to
that location. If you were to scroll down there, it would destroy the machine
language.
 If you check most of the machine language programs we have printed, you will
see that we stored them in the Line Input Buffer (20180 thru 20283): February
1980 issue of CURSOR page 10, Line 1010 "M=20180"; March 1980 issue page 22,
Line 50 "M=20180"; October 1980 issue page 71, Line 20 "A=20180". In each case
the starting location is 20180.
 When doing Machine Language programming, we cannot stress enough the
importance of a "TI PROGRAMMER CALCULATOR." It isn't cheap ($59.00) but it will
save hundreds of hours of work. Most of the time spent in programming is
changing from Binary to Hexadecimal and Decimal and back again. By purchasing
this calculator, which is designed exclusively for machine language programmers,
you eliminate all that work.
 The binary form of number representation is the basis of computer
operations. It requires the use of only two digits: 0 and 1. These two digits
are represented by voltages in the computer, a low voltage (0) and a high
voltage (1). The following is a representation of the numbers 0 through 5
written in binary form: 0=0, 1=1, 10=2, 11=3, 100=4, 101=5. Notice how rapidly
the numbers get very long. Let's tackle some larger numbers.
 In the Decimal System (base 10) each digit represents a power of 10. For
example:

 423 = 4 x 100 or 4 x 10^2
 + 2 x 10 or 2 x 10^1
 + 3 x 1 or 3 x 10^0

Page 14

Any number raised to the 0 power equals 1, i.e., 20=1, or 160=1, etc.
 In the Binary System (base 2), each digit represents a power of 2. For
example:

 1101 = 1 x 2^3 or 1 x 8
 + 1 x 2^2 or 1 x 4
 + 0 x 2^1 or 0 x 2
 + 1 x 2^0 or 1 x 1
 ------- -----
 BINARY 1101 = 13 DECIMAL

 So, 1101 in binary is the equivalent of 13 in decimal.
Conversion between the two number systems can be done using these rules, but for
our purposes, we would normally convert binary to hexadecimal.

 SMALL NUMBER CONVERSION TABLE

 DECIMAL BINARY HEXADECIMAL
 ------- ------ -----------
 0 0 0
 1 1 1
 2 10 2
 3 11 3
 4 100 4
 5 101 5
 6 110 6
 7 111 7
 8 1000 8
 9 1001 9
 10 1010 A
 11 1011 B
 12 1100 C
 13 1101 D
 14 1110 E
 15 1111 F
 16 10000 10

 In the hexadecimal (base 16) number system, there are 16 different digits.
The digits 0 through 9 are borrowed from the decimal system and letters of the
alphabet fill in the other six. In the hexadecimal system, each digit
represents a power of 16. For example:

 Page 15

 1B3 = 1 x 16^2 or 1 x 256
 + B x 16^1 or 11 x 16
 + 3 x 16^0 or 3 x 1
 --------- -------
 HEX 1B3 = 435 DECIMAL

 POWERS OF 16 CHART

 16^0 = 1
 16^1 = 16
 16^2 = 256
 16^3 = 4,096
 16^4 = 65,536

 Lets convert 2AF3 to decimal. 2AF3 is composed of four numbers, so we count
down four places on the Powers of 16 Chart for our first number:

 2 x 163 = 2 x 4096 or 8192
 + A x 162 = 10 x 256 or 2560
 + F x 161 = 15 x 16 or 240
 + 3 x 160 = 3 x 1 or 3
 -------- ----
 2AF3 HEX = 10995 DECIMAL

 If our hexadecimal number had been 2AF we would count down three places on
the powers of 16 chart for our first number:

 2 x 162 = 2 x 256 or 512
 + A x 161 = 10 x 16 or 160
 + F x 160 = 15 x 1 or 15
 --------- ---
 2AF HEX = 687 DECIMAL

Page 16

To convert decimal to hexadecimal, we divide the decimal number by the largest
power of 16 equivalent that will fit. Example: lets convert 10995 to Hex

 2

 4096/10,995
 8,192

 2,803 remainder

Our first Hex number is "2". Now divide the remainder by the next lower power of
16 equivalent:

 10

 256/2803
 256

 243 remainder

Our second Hex number is "A". Looking back on our conversion chart we find 10 =
A. Now we divide the remainder by the next lower power of 16 equivalent.

 15

 16/243
 16
 --
 83
 - 80
 --
 3 remainder

Our third Hex number is "F". Looking back on our conversion chart we find 15 =
F. Now, our final remainder becomes our fourth Hex number "3".

 10995 DECIMAL = 2AF3 Hexadecimal

 All of this has a tendency to overwhelm the beginner, but the concepts are
easily grasped if you'll stick with it, the rewards are tremendous!
 There is one additional stickler. Our BASIC cannot handle any decimal number
larger than 32,767. But it can handle the same number in negative form. In
other words, it can handle the decimal range of -32767 through 32767 which gives
us the full range of 65,536. If you are going to use a hex number larger than
7FFF it will, when converted to decimal, be larger than 32767. We must
therefore convert that number to a negative number that will be accepted by our
computer. The easiest way to do that is with the following program:

 Page 17

HEX TO DECIMAL CONVERTER - Note: Remember to reverse hex pair
 order prior to input.
 9 PRINT "HEX # ?",
 10 FOR A=1TO 4
 20 @(A)=KP
 30 IF @(A)>47IF @(A)<58TV=@(A);@(A)=@(A)-48;NEXT A
 35 IF @(A)>64IF @(A)<7lTV=@(A);@(A)=@(A)-55;NEXT A
 37 IF @(l)<16GOTO 60
 40 GOTO 20
 60 B=4096; T=0;FOR A=1TO 4
 65 IF A=1IF @(A)>7GOSUB 100;NEXT A
 70 IF A=1IF @(A)<8@(l)=@(l)xB;T=T+@(l);NEXT A
 75 B=B/16;@(A)=@(A)xB;T=T+@(A)
 80 NEXT A;GOTO 150
 l00 T=-32767;IF @(A)=8RETURN
 110 T=T+((@(A)-8)x4096)-l;RETURN
 150 PRINT ;PRINT #1,"DEC. EQUIV=",T
 160 GOTO 9

Why On-Board ROM Sub-routines?

 We can fairly simply write small machine language programs that will do
anything you want but, like any type of program, they take up memory space. We
are very fortunate that a manual exists explaining machine language routines
that are built into our unit already. These routines, when properly utilized,
require us merely to call them. Example: Page 6, Bally on-Board ROM Sub-
routines, Subroutine #48:

48 026A E,D,C,B,L,H SCROLL
 Block moves. Moves C bytes from (HL+DE) to (HL).
 Increments HL by DE and repeats B times.

 Lets look at the first line: '48' is the sub-routine number. '026A' is the
hexadecimal address of this subroutine (618 decimal). 'E,D,C,B,L,H', are the
Z80 registers that must be utilized and the order in which they must be loaded.
Looking at this again we will be using registers DE, C, B, HL.

 Whenever we use a machine language routine, we must use a "CALL" to tell the
computer where to go and also to notify it that the information will not be in
BASIC. Sometimes, when using a CALL, the computer can't find its way back,

Page 18

and your keyboard will lock up and do funny things. For this reason, it is
usually wise to "SAVE THE BASIC POINTER" as the very first thing, and "RETURN TO
BASIC" as the last.
 Let's put together a machine language program using the scroll Subroutine
#48. First we will write the program in machine language (OP Code).

OP CODE ASSEMBLY LANGUAGE COMMENTS

 D5 PUSHD Save Basic Pointer
 FF RST 56 On Board Subroutine Notification
 31 Subroutine 48 + 1 Converted to Hex

 Lets look again at the subroutine: it is saying that HL must be loaded with
the screen address of the first line we want to scroll. Please refer to the DMA
GRAPHICS article on page 25 of the April/May issue for an explanation of screen
address locations. I selected 18424 as the location I wanted.
 Our subroutine says it increments HL by DE. That means the increment is to
be stored in DE. Well, we want to scroll in one line increments, and referring
back to the April/May article we know that one full line on our TV is 40 bytes.
Therefore, we know that we want 18424 in HL and 40 in DE.
 Looking back at our subroutine it says "Moves C bytes from (HL + DE) to HL".
Therefore, 'C' would have to contain the number of bytes on a line you want to
move. Let's move half a line. Half of 40 is 20. Therefore 'C' must contain
20.
 Now for the last leg. Refer back to the subroutine: "Repeat B times".
Therefore, 'B' would be the total number of lines we want to move upward. In
this case let's move 20 lines.
 OK! HL = 18424; DE = 40; C =20; B = 20. Now we have to convert these
decimal values to hexadecimal:

 HL = 47F8; DE = 28; C = 14; B = 14

Several more items of necessary information before we proceed.
 HL and DE are register pairs. A "register pair" is a combination of two
registers. HL = H and L; DE = D and L. The purpose is to allow larger number

 Page 19

handling capability. Referring back to the subroutine, it gave us the register
load order (sequence): E,D,C,B,L,H
 This means we must split apart DE and HL. Lets load DE first. Remember,
DE=28. Each single register can handle a maximum of 2 hex numbers. In the case
of DE it already is two numbers so let's proceed with 00. DE=0028. Therefore,
E=28, D=00. Getting back to our program.

 D5 Save Basic Pointer
 FF Call Subroutine number
 31 48
 28 E Register
 00 D Register
 14 C Register
 14 B Register

 Next comes HL. The subroutine tells us to load HL backwards as we loaded
DE, so, HL=47F8 becomes F8 47.

 F8 L Register
 47 H Register
 Dl POP DE; Put Basic Pointer Back
 C9 Return; Go Back to Basic

 Next, we must convert these Hex pairs to Hex bytes (4 at a time) and then
convert Hex bytes to Decimal by using the Hex to Decimal Converter program. To
get Hex bytes we must first reverse their order:

 HEX PAIRS HEX BYTES DECIMAL
 --------- --------- -------
 DF FFD5 -43
 FF
 31 2831 10289
 28
 00 1400 5120
 14
 14 F814 -2028
 F8
 47 D147 -11961
 Dl
 C9 00C9 201
 00

Page 20

 Notice the "00" in the last line. We had to add zeroes so it would fill in
the space. 00 in assembly language is known as "NOP", which means 'No Op' (No
Operation); in other words-- nothing.
 We converted the Hex to Decimal because our computer can't understand the
Hex Code. Ah, someday...
 In previous pages we discussed the locations we can store a machine language
program. Now, we will discuss how to get it in there.
 We will store our program in the Line Input Buffer starting at 20l80. Look
at our complete program now:

 1010 M=20l80;B=M;C=l090
 1020 L=-43;GOSUB C
 l030 L=10289;GOSUB C
 l040 L=5120;GOSUB C
 1050 L=-2028;GOSUB C
 1060 L=-11961;GOSUB C
 1070 L=-201;GCSUB C
 1080 FOR A=ltol4;CALL B;NEXT A;STOP
 1090 %(M)=L;M=M+2;RETURN

 Lets run through this program the same way the computer will: Nothing
happens until we get to l020, we GOSUB C, which is Line l090. 1090 says:
 Poke Location M with the Value of L, then increment M, by 2 and return.
This goes on through line #1070 thusly:

 %(20180)=-43
 %(20182)=10289
 %(20184)=5120
 %(20186)=-2028
 %(20188)=-11961
 %(20190)=-201

 Then we go to Line l080. In this case, we want to CALL this Subroutine 14
times and then STOP. Notice we are using the Variable B, which gives the
beginning location of OUR Subroutine. 'M' wouldn't help us at all because we
were incrementing 'M'.

 Page 21

 If you are still somewhat confused don't feel alone. The more you reread,
and work with the examples we print in our issues, the clearer it will become.

INTERRUPT HANDLING

 This is a somewhat more complex area to handle. If you are a total
beginner, this section may appear to be gobbledy-gook. However, if you buy the
books we have recommended and do the exercises in our issues and manuals, you
will come to an understanding. Computer Programming is like any other endeavor,
YOU MUST LEARN TO WALK BEFORE YOU RUN.

OUTPUT PORT D (HEX) (13 DECIMAL) INTERRUPT FEEDRACK:
--

 This Port works with the IM2 instructions to place on the data bus at each
interrupt, the data that is sent out to this port.
 In most Z80 applications IM2 is used to determine where to go for a device
interrupt. The Bally uses it to generate a location to go to at each screen
interrupt. ___
 When the Z80 receives an INT from the Address Chip, it looks to the 'I'
register for the high order byte (or page) and to the data bus for the low order
byte, of the address for the interrupt vector. This interrupt vector points to
the interrupt processing routine. Only the upper 4 bits are used in responding
to a Light Pen interrupt.

 EXAMPLE IM2 INTERRUPT. This example is what the BASIC really does. BASIC's
 interrupt routine is at 20B0 (hex).

Page 22

 Diagram of IM 2 INTERRUPT

 (4) Pushes (1) Produces Interrupts
Stack Program +-----+ ___ +----------------+
+----+ Counter | | INT | |
| PC | <-----------+ Z80 | <-------------------+ Address Chip |
+----+ | | | |
 +--+--+ +----------------+
 |
 |
 I Reg. (3) | (2) +----------------+
 +------+ | +----+ Data Bus | |
 | 20 +-----> | <-----+ 62 | <---------+ Data Chip |
 +------+ | +----+ | |
 | | +----------------+
 | |
 | | Data Chip places value output
 | | to port D (hex) on Data Bus
 |
 V
 +----------------------+
 | Z80 goes to 2062 for |
 | interrupt vector |
 +---+------------------+
 |
 |
 V
 +--------+
 2060 | | +--(6) Start of Interrupt
 +--------+ (5) | Processing
 2062 | 20B0 | +---------------+ +-> +--------+
 +--------+ | Transfers +-----> | 20B0 |
 2064 | +-----> | controls to | +--------+
 +--------+ | this location | | . |
 | | +---------------+ +--------+
 +--------+ | . |
 | | +--------+
 +--------+ | . |
 +--------+
 +-> | RET I |
 | +--------+
 |
 +--(7) Replace PC from
 stack and return
 to Interrupt
 Program

 Page 23

OUTPUT PORT E (HEX) (14 DECIMAL) INTERRUPT MODE:
--

 The value output to this part determines what type of interrupt is to occur.
There are two types of interrupts: Screen Interrupts and Light Pen Interrupts.
 The Screen Interrupt is used to synchronize the software with the video
display. The Screen Interrupt is the INT Signal sent to the Z80. The Screen
Interrupt occurs when the video system completes scanning the line in the
interrupt line register (output port F (HEX)). This interrupt can be used for
timing since each line is scanned 60 times a second.
 By writing your own interrupt routines and using the 'I' register and output
port D (HEX) to point to it you can put up to 256 different colors on the screen
by changing the color registers each interrupt.
 The Light Pen Interrupt occurs when the Light Pen Interrupt mode is set and
the light pen is triggered and the video scan crosses the point on the screen
where the light pen is.
 There are two modes for both the Screen Interrupt and Light Pen. In mode
'0' the custom chips will continue to try to interrupt the Z80 until it finally
acknowledges the interrupt. In Mode '1' the custom chips give up if the Z80 does
not acknowledge it by the next instruction. Both interrupts can occur if both
are set, but the screen interrupt has priority.

 INTERRUPT CONTROL BITS

 PORT E (Hex) bits Bit Bit 0 - Light Pen Mode (0 or 1)
 7 6 5 4 3 2 1 0 Bit 1 - Light Pen Interrupt Enable (1 for
 +---+---+---+---+---+---+---+---+ enabled
 | | | | | | | | | Bit 2 - Screen Interrupt Mode (0 or 1)
 +---+---+---+---+---+---+---+---+ Bit 3 - Screen Interrupt (1 for enabled)

Page 24

 You can see from this (refer to INTERRUPT CONTROL BITS chart page 23) that
if you want just a Screen Interrupt in Mode 0 (must interrupt) without the Light
Pen, you would just set bit 3 and the decimal value would be 8. This is why 8
is always output to Part E in the games and in BASIC!

OUTPUT PORT F (HEX) (15 DECIMAL) INTERRUPT LINE:
--

 The value output to this port determines when a screen interrupt (INT to
Z80) occurs. In our low resolution system only bits 1 - 7 are used with bit 0
set to zero. In low resolution there are 102 lines of 40 bytes with 16 bytes
left over. Since the custom chips were designed to operate in a high resolution
mode they scan 204 lines. This means that for every line of low resolution that
is scanned 2 lines of high resolution were scanned. Since the reference for
Port F (HEX) is for high resolution, we have to multiply the number of lines in
low resolution by two for the value we output to the port. This is why bit zero
is set to zero and we only use bits 1 - 7.
 When the custom chips have finished scanning the number of lines output to
Port F (HEX) a screen interrupt is generated. Each line is scanned 60 times a
second and there are 256 lines per frame so 15,360 lines are scanned per second.
If you divide output Port F (HEX) by 15,360 you will get the time in seconds
between interrupts. EXAMPLE:

 PORT F = 200 lines 200/15360 = .013 seconds between
 interrupts or 13
 milliseconds.

OUTPUT PORT C (HEX) (12 DECIMAL) THE MAGIC REGISTER:
--

 When an On-Board WRITE Routine calls for a MAGIC REGISTER value, this means
that it is to modify the data before placing it in memory. This is valid only
if the 'write' is from 0 to 16K. What happens is, you write to a location
between 0 and 16K. In our low resolution system this only works from 0 to 4K
since we only have 4K of memory.

 Page 25

 FUNCTIONS SET BY MAGIC REGISTER SETS

 Bit 0 - LSB of shift amount
 7 6 5 4 3 2 1 0 Bit 1 - MSB of shift amount
 +---+---+---+---+---+---+---+---+ Bit 2 - Rotate
 | | | | | | | | | Bit 3 - Expand
 +---+---+---+---+---+---+---+---+ Bit 4 - OR
 Bit 5 - XOR
 Bit 6 - Flop

NOTE: Low resolution DOES NOT allow use of rotate.

 As many as four functions can be done at once. Order of operation is as
follows:

 1. Expansion
 ** 2. Rotating and Shifting ** NOTE: Rotate and Shift, and
 3. Flopping OR and XOR, CANNOT be
 ** 4. OR and XOR set at the same time.

INPUT PORT 8 (HEX) (8 DECIMAL) INTERRUPT FEEDBACK REGISTER:

 This is an INPUT function. By looking at this register after an OR or XOR
has been performed we can determine if we have written on top of something and
also where.
 A '1' in the intercept register means we have written on top of something.
Bits 0 - 3 give information for all OR or XOR Writes since the last input from
the intercept register resets these bits. This means every time something is
written into memory using an OR or XOR a check is made to see if the Write
occurred over other data, if so, Port 8 (HEX) bits 0 - 3 are reset to zero.

Page 26

 INTERCEPT FEED BACK BITS

 Bit 0 - Intercepts in pixel #3 in
 an OR or XOR Write since
 last reset
 7 6 5 4 3 2 1 0 Bit 1 - Same as bit 0 for #1
 +---+---+---+---+---+---+---+---+ Bit 2 - Same as bit 0 for #2
 | | | | | | | | | Bit 3 - Same as bit 0 for #3
 +---+---+---+---+---+---+---+---+ Bit 4 - Intercept is pixel #3 in
 last OR or XOR Write
 Bit 5 - Same as Bit 4 for #2
 Bit 6 - Same as Bit 4 for #3
 Bit 7 - Same as Bit 4 for #4

 Bit
 +-------------- Byte --------- | ---+
 Relation between byte,, bit and + +---+---+---+---+---+---+---+-V-+ |
 Pixel. NOTE: A word is two bytes +- | | | | | | | | | -+
 +---+---+---+---+---+---+---+---+
 Pixel | #3 | #2 | #1 | #0 |
 \ /
 Pixel

 Page 27

 On this page in the original version of the Peek 'n Poke manual there is a
Machine Language listing of 'Critter' from page 66 of the October issue of the
Cursor newsletter here; it's now in Appendix one. Critter is a program written
for the original version of Bally BASIC. It is a small subroutine called from
BASIC that moves an object around with no blinking. It uses the same routines
that the cartridges use to achieve this effect.
 The original listing was typed by hand, so there were numerous errors (the
program was also a bit light on comments too). I have retyped the source for
Critter so that it can be assembled using the freely distributable assembler
called Zmac. I had two objects in mind when I did this: one, the program
listing is free of typing errors, and two I added comments so that anyone with
the 'Nutting' Manual can follow the code.

ASCII Conversion Chart

 ASCII Char ASCII Char ASCII Char ASCII Char ASCII Char
 13 GO 47 / 64 @ 81 Q 98 x (Mult)
 31 ERASE 48 0 65 A 82 R 99 / (Divide)
 32 SPACE 49 1 66 B 83 S 104 LIST
 33 ! 50 2 67 C 84 T 105 CLEAR
 34 " 51 3 68 D 85 U 106 RUN
 35 # 52 4 69 E 86 V 107 NEXT
 36 $ 53 5 70 F 87 W 108 LINE
 37 % 54 6 71 G 88 X 109 IF
 38 & 55 7 72 H 89 Y 110 GOTO
 39 ' 56 8 73 I 90 Z 1ll GOSUB
 40 (57 9 74 J 91 [112 RETURN
 41) 58 : 75 K 92 \ 113 BOX
 42 * 59 ; 76 L 93] 114 FOR
 43 + 60 < 77 M 94 Up 115 INPUT
 44 , 61 = 78 N 95 Left 116 PRINT
 45 - 62 > 79 O 96 Down 117 STEP
 46 . 63 ? 80 P 97 Right 118 RND
 119 TO
 Note: ASCII 94 through 97, the characters are arrows of description

Memory Map
 Decimal
On Board ROM 0 - 8191
Bally Basic ROM 8192 - 12287
Screen Memory Area 16384 - 20479
Bally Basic Graphics/ 16384 - 19983
 Program area
Bally Basic Scratchpad 20000 - 20463
Tape Input Buffer 20002 - 20049
Variables begin at 20078
Line Input Buffer 20180 - 20283
 (104 Characters)
Stack Area 20284 - 20462
Text Area -24576 - -22777
Note Lookup Table 12046

Special acknowledgement to: Mr. Brett Bilbrey for his contribution of
information to this manual.

Page 28

Appendix A - Critter Listing

This is the Assembly listing for Critter. It's called CRITTERP.LST. For Copy
and Paste purposes, Appendix B holds the actual source code.

 1: ; Critter - For the Bally Astrocade
 2: ; File Name: CRITTERP.ASM
 3: ; Version 1.1 - February 12, 2002
 4: ;
 5: ; This source is as it appears in the PEEK N' POKE
 6: ; manual. It has only been changed so that it
 7: ; assembles under Zmac; the Z80 code it generates is
 8: ; EXACTLY the same. Note that Critter does not run
 9: ; without the first version of Bally BASIC; Critter
 10: ; does NOT run under Astro BASIC (it needs vector mod-
 11: ; ifications).
 12: ;
 13: ; Compile with:
 14: ; zmac -i -m -o critterp.bin -x critterp.lst critterp.asm
 15:
 16: 0006 MCALL EQU $06
 17: 0008 MRET EQU $08
 18: 003E VECT EQU $3E
 19:
 20: 4C80 ORG $4C80
 21: 4C80 F3 DI
 22: 4C81 D9 EXX
 23: 4C82 3E4C LD A,$4C
 24: 4C84 ED47 LD I,A ;Load I with page of interrupt vector
 25: 4C86 3EE0 LD A,$E0
 26: 4C88 D30D OUT ($0D),A ; Load custom chips with line of
 27: 4C8A D9 EXX ; interrupt vector
 28: 4C8B FB EI
 29: 4C8C C9 RET
 30:
 31: 4CE0 ORG $4CE0
 32: 4CE0 E34C DW $4CE3 ; Points to interrupt routine
 33:
 34: 4CE3 ORG $4CE3
 35: 4CE3 CDB020 CALL $20B0 ; Call Bally's interrupt routine
 36: 4CE6 F3 DI
 37: 4CE7 ED73704C LD ($4C70),SP ; Save SP
 38: 4CEB 31704C LD SP,$4C70 ; Move SP
 39: 4CEE F5 PUSH AF
 40: 4CEF C5 PUSH BC
 41: 4CF0 D5 PUSH DE
 42: 4CF1 E5 PUSH HL
 43: 4CF2 DDE5 PUSH IX
 44: 4CF4 FDE5 PUSH IY
 45: 4CF6 DB1C IN A,($1C) ; Get KN(1) value
 46: 4CF8 323A4D LD ($4D3A),A ; Place in vector block
 47: 4CFB FF RST $38 ; On-board call
 48: 4CFC 00 DB $00 ;Routine 01 - Start Multiple Calls

 Page 29

 49: 4CFD 07 DB MCALL+1 ; Call V Write Routine
 50: 4CFE 184D DW VWRITE
 51: 4D00 3F DB VECT+1 ; Move vector (see ROM manual)
 52: 4D01 384D DW VBLOCK ; Vector Block Address
 53: 4D03 204D DW LIMITS ; Limit Table
 54: 4D05 07 DB MCALL+1 ; Call V Write Routine
 55: 4D06 184D DW VWRITE
 56: 4D08 02 DB $02 ; Routine 02 - End Multiple Calls
 57: 4D09 FDE1 POP IY
 58: 4D0B DDE1 POP IX
 59: 4D0D E1 POP HL
 60: 4D0E D1 POP DE
 61: 4D0F C1 POP BC
 62: 4D10 F1 POP AF
 63: 4D11 ED7B704C LD SP,($4C70) ; Return SP
 64: 4D15 FB EI
 65: 4D16 C9 RET
 66:
 67: 4D18 ORG $4D18
 68: 4D18 1F VWRITE: DB $1F ; Routine 30 - VWRITR
 69: 4D19 384D DW $4D38 ; Vector
 70: 4D1B 244D DW $4D24 ; Pattern
 71: 4D1D 08 DB MRET
 72:
 73: 4D20 ORG $4D20
 74: ; Limit Table
 75: ; Note: This part of the source doesn't match the ML
 76: ; listing. I had to fudge it to make it match;
 77: ; because of this, I have typed, but commented
 78: ; out, the four lines of 'weird' ML listing.
 79: ; Notice that the assembly hex codes are reverse
 80: ; ordered; this is how the manual lists the lines.
 81: ; 00 98 DW 152 ; X boundaries
 82: ; 00 40 DW 64 ; Y boundaries
 83: ; 00 00 DW 0 ; (0,0) Position
 84: ; 02 08 DW 520 ; 2 byte, 8 line pattern size
 85:
 86: 4D20 0098 LIMITS: DB 00D,152D ; X boundaries
 87: 4D22 0040 DB 00D,64D ; Y boundaries
 88: 4D24 0000 DB 00D,00D ; (0,0) Position
 89: 4D26 0208 DB $02,$08 ; 2 byte, 8 line pattern size
 90:
 91: ; Critter pattern
 92: 4D28 0AA0 DW $A00A
 93: 4D2A 2288 DW $8822
 94: 4D2C AAAA DW $AAAA
 95: 4D2E 2AA8 DW $A82A
 96: 4D30 0820 DW $2008
 97: 4D32 2008 DW $0820
 98: 4D34 0820 DW $2008
 99: 4D36 0000 DW $0000
 100:

Page 30

 101: ; VECTOR BLOCK (See 'Nutting' ROM Manual, page 39-41)
 102: 4D38 20 VBLOCK: DB $20 ; Magic Register value
 103: 4D39 80 DB $80 ; Vector Status
 104: 4D3A 00 DB $00 ; Time Base - Holds KN(1) value
 105: 4D3B 0500 DW $0005 ; Delta X
 106: 4D3D 0000 DW $0000 ; X Position
 107: 4D3F 03 DB $03 ; X Checks Mask -Bounce off walls
 108: 4D40 0500 DW $0005 ; Delta Y
 109: 4D42 0000 DW $0000 ; Y Position
 110: 4D44 03 DB $03 ; Y Checks Mask -Bounce off walls
**** work\critterp.asm ****

Statistics:

 6 symbols
 110 bytes

Symbol Table:

limits 4d20 vblock 4d38
mcall = 6 vect = 3e
mret = 8 vwrite 4d18

 Page 31

Appendix B - Bally BASIC version of Critter

This is the original "Critter" program (and article) as printed in the October
1980 issue of the Cursor newsletter (Vol.2, pg. 66-67). This article (which is
NOT included in the original PEEK n' POKE manual) is included here because this
is the exact program as in Appendix A, but with a BASIC loader to get the
program into memory. After the program is run, the Astrocade holds EXACTLY the
same data in the EXACT same memory locations as the assembled Z80 code in
Appendix A.

Critter
By Brett Bilbrey

This program will place a Space Invader type "CRITTER" on the screen that will
bounce from top to bottom and side to side without disturbing anything that is
already on-screen. This "CRITTER" will run independent of anything else you
wish to do. If you press "HALT," he won't! His speed is controlled by Hand
Control Knob #l.

After you have "RUN" this program, do NOT scroll to the bottom line! Use
"CY=40" to keep any text away from the area in the bottom of the screen that is
"twinkling" (also, do not use "CLEAR").

Once the BASIC program has been "RUN," it can be erased and replaced with
whatever you want. Use ":RETURN" to stop the routine, and "CALL 19584" to start
it up again. One problem is that when BASIC tries to print on top of the
"CRITTER," some small screen glitches appear. You can create an invisible
screen by altering the value of Port 15 (&(15) Interrupt Line Port). It is set
to 99 which is the minimum size of invisible screen. The Interrupt Line Port
determines the number of lines scanned before the next interrupt (for a complete
explanation of all the interrupt ports etc., refer to CURSOR "PEEK n' POKE"
manual. To give you an example of a use for this type of routine, input the
following line after you have "RUN" the program: key-in ":RETURN" and hit "GO"
before you key in the line:

 1 CALL 19584;&(15)=99;INPUT A;:RETURN ;STOP

As you know, when the computer hits an "INPUT" command, it will just sit there,
waiting for you to give it a value, it will not allow anything else to happen
until you key in a value. With this one line program, it will start the
"CRITTER" bouncing around the screen as soon as it hits the input line and will
stop the "CRITTER" as soon as you input a value.

"So what," you ask? Well, instead of having a "CRITTER," we could have a clock
decrementing from one minute. If you don't get your answer into the computer
before the clock hits zero, you lose your turn and control switches to the next
player. This would provide for truly sophisticated software. So, don't lose
heart, we are on the opening stages of an exciting software era.

Brett notes that he received a great deal of help from Tom Wood, Dave Ibach, and
John Perkins, without whose help he doubts he could have written this program.

Page 32

"Critter"

10 CLEAR ;&(15)=99
20 A=l9584;B=A;C=640
30 D=-9741;GOSUB C
40 D=19518;GOSUB C
50 D=18413;GOSUB C
60 D=-8130;GOSUB C
70 D=3539;GOSUB C
80 D=-1063;GOSUB C
90 D=201;GOSUB C
l00 A=19680
110 D=19683;GOSUB C
120 A=19683
130 D=-20275;GOSUB C
140 D=-3296;GOSUB C
150 D=29677;GOSUB C
160 D=19568;GOSUB C
170 D=28721;GOSUB C
180 D=-2740;GOSUB C
190 D=-10811;GOSUB C
200 D=-8731;GOSUB C
210 D=-539;GOSUB C
220 D=-9243;GOSUB C
230 D=12828;GOSUB C
240 D=l9770;GOSUB C
250 D=255;GOSUB C
260 D=6151;GOSUB C
270 D=16205;GOSUB C
280 D=19768;GOSUB C
290 D=19744;GOSUB C
300 D=6151;GOSUB C
310 D=589;GOSUB C
320 D=-7683;GOSUB C
330 D=-7715;GOSUB C
340 D=-11807;GOSUB C
350 D=-3647;GOSUB C
360 D=31725;GOSUB C
370 D=19568;GOSUB C
380 D=-13829;GOSUB C
390 A=19736
400 D=14367;GOSUB C
410 D=9293;GOSUB C
420 D=2125;GOSUB C
430 D=19744
440 A=-26624;GOSUB C
450 D=16384;GOSUB C
460 D=0;GOSUB C
470 D=2050;GOSUB C
480 D=-24566;GOSUB C
490 D=-30685;GOSUB C
500 D=-21846;GOSUB C
510 D=-22486;GOSUB C

 Page 33

520 D=8200;GOSUB C
530 D=2080;GOSUB C
540 D=8200;GOSUB C
550 D=0;GOSUB C
560 D=-32735;GOSUB C
570 D=1280;GOSUB C
580 D=0;GOSUB C
590 D=768;GOSUB C
600 D=5;GOSUB C
610 D=0;GOSUB C
620 D=3;GOSUB C
630 CALL B;STOP
640 %(A)=D;A=A+2;RETURN

Page 34

Appendix C - Critter Source

This is the Assembly source for Critter (it's called CRITTERP.ASM). It is
included for Copy and Paste purposes, therefore there are no page numbers on
these pages. Copy the file, make changes (if you want) and then assemble it
using Zmac. As noted in the source code, Critter is not executable without
BASIC, so don't expect it to run as a cartridge.

; Critter - For the Bally Astrocade
; File Name: CRITTERP.ASM
; Version 1.1 - February 12, 2002
;
; This source is as it appears in the PEEK N' POKE
; manual. It has only been changed so that it
; assembles under Zmac; the Z80 code it generates is
; EXACTLY the same. Note that Critter does not run
; without the first version of Bally BASIC; Critter
; does NOT run under Astro BASIC (it needs vector mod-
; ifications).
;
; Compile with:
; zmac -i -m -o critterp.bin -x critterp.lst critterp.asm

MCALL EQU $06
MRET EQU $08
VECT EQU $3E

 ORG $4C80
 DI
 EXX
 LD A,$4C
 LD I,A ;Load I with page of interrupt vector
 LD A,$E0
 OUT ($0D),A ; Load custom chips with line of
 EXX ; interrupt vector
 EI
 RET

 ORG $4CE0
 DW $4CE3 ; Points to interrupt routine

 ORG $4CE3
 CALL $20B0 ; Call Bally's interrupt routine
 DI
 LD ($4C70),SP ; Save SP
 LD SP,$4C70 ; Move SP
 PUSH AF
 PUSH BC
 PUSH DE
 PUSH HL
 PUSH IX
 PUSH IY

 IN A,($1C) ; Get KN(1) value
 LD ($4D3A),A ; Place in vector block
 RST $38 ; On-board call
 DB $00 ;Routine 01 - Start Multiple Calls
 DB MCALL+1 ; Call V Write Routine
 DW VWRITE
 DB VECT+1 ; Move vector (see ROM manual)
 DW VBLOCK ; Vector Block Address
 DW LIMITS ; Limit Table
 DB MCALL+1 ; Call V Write Routine
 DW VWRITE
 DB $02 ; Routine 02 - End Multiple Calls
 POP IY
 POP IX
 POP HL
 POP DE
 POP BC
 POP AF
 LD SP,($4C70) ; Return SP
 EI
 RET

 ORG $4D18
VWRITE: DB $1F ; Routine 30 - VWRITR
 DW $4D38 ; Vector
 DW $4D24 ; Pattern
 DB MRET

 ORG $4D20
; Limit Table
; Note: This part of the source doesn't match the ML
; listing. I had to fudge it to make it match;
; because of this, I have typed, but commented
; out, the four lines of 'weird' ML listing.
; Notice that the assembly hex codes are reverse
; ordered; this is how the manual lists the lines.
; 00 98 DW 152 ; X boundaries
; 00 40 DW 64 ; Y boundaries
; 00 00 DW 0 ; (0,0) Position
; 02 08 DW 520 ; 2 byte, 8 line pattern size

LIMITS: DB 00D,152D ; X boundaries
 DB 00D,64D ; Y boundaries
 DB 00D,00D ; (0,0) Position
 DB $02,$08 ; 2 byte, 8 line pattern size

; Critter pattern
 DW $A00A
 DW $8822
 DW $AAAA
 DW $A82A
 DW $2008
 DW $0820
 DW $2008
 DW $0000

; VECTOR BLOCK (See 'Nutting' ROM Manual, page 39-41)
VBLOCK: DB $20 ; Magic Register value
 DB $80 ; Vector Status
 DB $00 ; Time Base - Holds KN(1) value
 DW $0005 ; Delta X
 DW $0000 ; X Position
 DB $03 ; X Checks Mask -Bounce off walls
 DW $0005 ; Delta Y
 DW $0000 ; Y Position
 DB $03 ; Y Checks Mask -Bounce off walls

	Peek n' Poke Manual, by Brett Bilbrey, Edited by Cursor Group, 1980

