Cover Page

Peek N Poke Manua
Version 1.0 - Rel eased Cct 26, 2000
Version 1.21 - February 15, 2002

I nportant Not e:

Not e, where necessary:

"/" replaces a 'division' sign
"X' replaces a nmultiplication sign
This manual was originally witten for the first version of Bally BASIC (the
cartridge that requires the joystick port cables). However, alnpst everything
in here is still applicable to the second version of Bally BASIC (the cartridge
with the built-in microphone jack-- also referred to as Astro BASIC). The
onboard cal culator routine ($) referred to on page 12, has been renoved from
AstroBasic. lgnore any reference to this original Bally BASIC command. Al so,
Critter is witten for use with the 300 baud BASIC

Li nes wrappi ng?

This text was witten to display properly using a nono-spaced font and at
| east 80 columms. To avoid wrap-around and neke t he appearance of this file
readable try this:

- Change the font to a nono-spaced font (Courier New)
- Reduce the font-size of the listing
- Reduce the left and right nargins

PEEK N POKE

FRED CORNETT
MANAG NG EDI TOR
THE CURSCR GROUP

Copyright 1980 by THE CURSOR GROUP

Al rights reserved, including the
right to reproduce this manual or
portions thereof in any form whatsoever
Wi t hout permission in witing fromthe
publ i sher/ aut hor.

AstroBasi c, please contact ne so that | can nmake note of it.

Page O

This page intentionally left blank for doubl e-sided printing purposes.

Page 1

PEEK n' POKE

Witten by: FRED CORNETT
The Cursor Group

There has been a great deal of confusion as to exactly what PEEK n' POKE
around what they do.

Your computer consists of many thousands of sinple circuits that are capable
of registering their state (or condition). That state can only be one of two
conditions: ON or OFF. The conputer is capable of checking the status of any
i ndi vidual bit of nenory location. A byte is one nenory |location. A byte is
conposed of 8 bits. The conputer uses synbol substitution to conmunicate with
you. |If any particular bit is turned 'ON it substitutes a "1", if it is 'OFF,
a 0 is substituted. A programis a set of instructions that is placed in nmenory
by a set pattern of one's and zero's. This is the | anguage your conputer
understands. It is called "BINARY."

If we had to input our prograns in one's and zero's, it would be very
difficult and take forever. So, there is an internedi ate |anguage call ed
"Assenbly Language." Each type of CPU (Central Processing Unit) chip speaks a
different | anguage. Qur CPU chip is a Z80. The instructions we give our Z80
are called "Menonics". These menpnics are an abbreviati on of assenbly
| anguage. Assenbly | anguage exists only for the conveni ence of the programer,
who can | ook at a program on paper and understand the logic flow

For a conmputer to understand assenmbly | anguage, it nmust have a program
called an assenbler. Qur computer does not. So for us to force an assemnbly
| anguage programinto our conputer, we must buy a book that translates Z80
menonics into "OP Code."

An "OP Code" is our instruction which has been coded into a hexadeci mal
nunber (Base 16). Decinmal nunbers are Base 10, binary is Base 2, and OP Code
(Hex) is Base 16. A book of Z80 OP Codes mmy be purchased in npst any conputer
store.

Page 2

Hol d on, you aren't done yet! Renenber, our conputer does not have an
assenbler, so it can't understand our "OP Code" instructions (Hex) until we
convert themto deci nal

The average conputer newconer is at this nonent nuttering "To heck with it!"
Why bot her you ask? As you know, "BALLY BASIC' is sonewhat |inmted, nachine
| anguage is not! Stick with us, we have one nore nmjor problemto solve.

K, we've witten an assenbly | anguage program converted that to menonics
and OP Code. So how in the world do we get it into the conputer? Well, it's
been hard up till now, but the good person who wrote 'Tiny Basic' (M. Jay
Fenton) nust have |iked us, because he gave us three very powerful comuands:
PEEK, POKE, and CALL. (Be thankful for these commands, many nmnufacturers don't
give themto their users).

"PEEK" is a command that lets you | ook at any specific nenory address and
find out what is stored there. |In our February 1980 issue, page 14, we printed
a 'Bally Menory Map'; use this map to find nenory |ocations. NOTE: 'PEEK
ACCESSES MEMORY 2 BYTES AT A TIME. Menory is normally accessed one byte at a
tinme, but Bally pulled some dirty tricks which has had some good results and
some bad results. For exanple: key in the followi ng one |ine program

10 A=26 "DO NOT H T RUN'
BALLY TEXT AREA: -24576 TO -22777

Lets use the 'PEEK' command to see how the programis stored.

The area where your Basic Programis stored is called the "Bally Text Area
and starts at -24576 and decrenents by two's to -22777. Hence, the beginning of
our program should be at location -24576. |INPUT the follow ng one |ine program
without a line and press "GO':

PRI NT % - 24576)

Page 3

Your conputer has printed "10". Renenber, all |ine nunbers occupy 2 bytes
regardl ess of size of line #. Wen we use 'PEEK', we are addressing 2 bytes at
a tine.

Let's try finding the rest of the program |INPUT the follow ng one line
program wi thout a |ine #.

PRI NT 9% - 24574)

Your computer has printed "15681."

What in the world is that? W told you that we are ' PEEKING 2 bytes at a
time, so now we nust separate the 2 bytes from each other.

When the conputer stored your programinitially, it pulled a dirty trick.
It multiplied the second characters ASCI|I Code tinme 256 and added the first
characters ASCI| Code to the total and 'POKED it in together.

Referring to the ASCII Conversion Chart in our June issue, page 39, ASCI

Code for "A" is 65; the ASCII Code for "=" is 61. Lets see if this works out:
256 x 61= 15616 + 65= 15681, which is what our conputer printed out when we told
it to "PRINT 9%-24574)." You can check this on your conmputer by keying in the

following without a line #:

X=9% - 24574) | 256; TV=RM TV=X
RMis a variable that contains the renmainder, if any, of any division problem

The conmputer will now print our "A=". So far, we have found that |ocation -

24576 contained the |line nunmber (10) and | ocation -24574 has stored "A=". Using
the sane procedure, lets |ook at the next l|ocation. Key in the follow ng one
line programwi thout a |ine # and press "Co"

PRI NT 9% - 24572)

Your conmputer will print "13874". Let's convert that by our division nethod

X=9% - 24572)/ 256; PRI NT RM X

Page 4

The conputer will print "50 54". These are the next two characters stored
using ASCI| Codes. Using our ASCII Chart, page 39, of the June issue: '50' =2
'54'=6. So, now we have found "10 A=26". [|'ll bet you think we are done, we
aren't! What is the last thing we do on a line? W hit "GO." This is always
stored at the end of each Iine. Let's |ook at the next |ocation -24570. Key in
the following one line programwi thout a line # and press "GO

PRI NT 9% - 24570)
Your computer will print '"13". Checking our ASCII Chart we find '13=G0O. Now

we have the conplete program 10 A=26.
We are now in a better position of understandi ng how many bytes our prograns

use:
LI NE # occupies 2 bytes ‘2 occupies 1 byte
A occupies 1 byte '6' occupies 1 byte
= occupies 1 byte ce) occupies 1 byte

I f you have not "RUN' the program and you key in "PRINT A" and press "GO
the conputer will print "0'. Now, RUN the program Key in "PRINT A" and press
"GO' and the conputer will print '26".

Let's I ook again at the nmenory map on page 14 of the February issue. W
find that variable |ocations begin at 20078, and since we know that al
vari abl es use 2 bytes, we are able to ascertain the nmenory |ocations for all of
the variabl es: A=20078 - add two bytes, B=20080 - add two bytes, and C=20082
etc...

Changing a variable is pretty easy, as in the case of our LINE | 0O program
When you key in A=26 (and hit RUN) the conputer goes to |ocation 20078 and
pl aces "26" in that location. The "BASIC' is acting as an interpreter between
us and the conputer. Let's elimnate the middl eman and do it ourselves! Key in
this:

Page 5

% 20078) =40 Press "GO

Now key in "PRINT A", press 'GO . The conputer will print out '40
"9420078)=40" is a "POKE Command." It allows us to "POKE" our own information
directly into a conputer location without using the "BASIC" interpreter. Do you
remenber the Music in our March issue, or "Connect Four" in the August issue?
Bot h of those prograns nade HEAVY use of "PEEK n' PCKE."

K fine, this is interesting and cute, but why use it? Lets |ook at the
followi ng exanple. Key in the follow ng one |ine program

10 A=22104; B=6109; C=19867; D=- 4107; E=9987; F=- 31063

Ht "G" and key in PRINT SZ. This took up 49 bytes. Al we wanted to do
is store 6 nunbers. Since we only have 1800 bytes, we should use as econom ca
a nmethod as possible. The cheapest way of doing this is by using a "REM
Statenment . "

10. 1234567890123

Way did we add 14 nunbers after the period? Let's figure it out. W are
going to store six large nunbers. Each of these nunbers will require a 2 byte
| ocation for storage. |In the previously explained process, we |earned that the
conmputer stores 2 different ASCI|I Codes in one 2 byte location, so we nultiply 2
X 6 and get 12 ASCI| characters. Now, we cannot 'POKE into the |ine nunber
| ocation, which is -24576, or the | ocation where the period (.) is -24574. Even

though the period occupies only one byte, we have to fill in that |ocation with
anot her ASCI| character (which we won't use) -- then reserve 12 bytes (for 6
nunmbers).

Menory Locati on Val ue Comment

- 24576 10 LINE # (don't POKE)
- 24574 .1 REM (don't POKE)

- 24572 23 Val ue 22104

- 24570 45 Val ue 6109

- 24568 67 Val ue 19867

- 24566 89 Val ue -4107

- 24564 01 Val ue 9987

- 24562 23 Val ue -31063

- 24560 "GO' is stored here

Page 6

INPUT the follow ng line: 10 .1234567890123
Now I NPUT the follow ng programwi thout a |ine nunber:

FOR A=-24572TO 24562STEP 2; | NPUT % A); NEXT A

The conputer will print "9%A" and wait! It is waiting for you to I NPUT the
6 val ues, pressing "GO after each one: 22104, 6109, 19867, -4107, 9987, -31063.
After you have done this, key in 'LIST'. The conputer will print:

10 . IXV??22?2M??27?" 27

The reason the conputer printed garbage in LINE 10 is; it is dividing by 256
and printing the result of an ASCI| Code. Whenever an ASCI|I Code is not a
standard ASCI| Character, our conputer prints '?'.

To make sure we really have "POKED' those 6 values into LINE 10, lets "PEEK"
at them INPUT this one line programw thout a line # and hit "GO

FOR A=-24572TO 24562STEP 2; PRI NT % A) ; NEXT A
The conputer will print:
22104 6109 19867 -4107 9987 -31063

Renmenber when we used the old nethod of storing this info: A=22104; B=6109
etc? Wien we keyed in "PRINT SZ" it printed "1751", which nmeans the ol d way
took up 49 bytes. NOWKkey in "PRINT SZ'. The conputer will print "1783". A
savi ngs of 32 bytes (and we are only using 6 nunbers). Think of the saving if
you had 100 number s!

I generally find nyself in a high state of agitation with people who gripe a
| ot about things they can't change. As an Anerican, | have found that the best
way to beat the systemis not to becanme an anarchist and destroy it, but to work
within the systemand get it to work for you! This can be beautifully applied
to the "BALLY." An exanple:

Many of us have been frustrated at the 'apparent’' inability of our "BALLY"

Page 7

to store decimal formatted nunbers (i.e., $127.10) in one variable or location
We have learned in this tutorial that 2 ASCII Codes can be stored in one 2 byte
| ocation and yet be separated by multiplying one of them by 256 (x256) and
adding the other to the total.

We have one linmitation. ALL VALUES MUST FALL BETWEEN 32767 and - 32767
Suppose we are trying to put a checkbook programtogether and we want to store
dollars and cents as one value in string variables.

Using the logic that Jay Fenton used in storing two characters in one
|l ocation, lets pull our own dirty trick. |INPUT the follow ng program

10 INPUT D, C
20 T=Dxl| 00+C
30 PRINT #1,T,"+$",T/100,".", RM

Now RUN this program \Wen the conputer prints "D' I NPUT 127; when the
computer prints "C' INPUT 10. The conputer will now print:

12710=%$127. 10

VWhat we are doing is this: D=Dollars, C=Cents. W are nultiplying Dx100 and
adding "C' to it to create "T" (for Total). Wat we have done is store Dollars
and Cents in one variable, which could just as easily have been one string
variable (@1)) or one nenory |ocation

To get the anpbunt back out, we divide the total "T" by 100, which will give
us Dollars and we get the Cents anpbunt fromthe variable "RM'. Easy isn't it?

Remenber the limtation we spoke of ? We cannot use any val ues | arger than
32767, which in our case boils down to $327.67. That wouldn't have been nuch of
a drawback in 1955 but it sure is now Let's play sone dirty tricks of our own.
Key in the follow ng program

Page 8

10 INPUT D, C
20 | F D>326D=D- 326; T=Dx100+C; T=(- T) ; GOTO 40

30 T=Dx100+C

40 PRINT T

50 | F T#ABS(T) T=ABS(T); D=T/ 100+326; C=RM GOTO 700
60 D=T/ 100; C=RM

70 PRINT #l,"$",D,".",C
Now we can handl e any anmpbunt LOWER than $653.68. | don't find this nuch of
alimtation; if we were witing a checkbook program | doubt if many of us

would write nore than one or two checks exceedi ng $653. 67 per nonth. \Whenever
we need to wite an anount for nore than that, just break it into two checks
i nstead of one. Let's go through that program step-by-step

LI NE 10:

LI NE 30:

Thi s ends the

LI NE 50:

If dollar anpbunt (D) is larger than 326, subtract 326
fromdollar (D) ampbunt. Total (T) equals dollar (D)
anmount multiplied by 100 and add cent (C) anpunt. Set
a flag to notify conputer that this anobunt is nore than
$326 by neking the total (T) negative (-T). Skip

I'ine 30.

If dollar amount is |less than $327 total, (T) equals
equal s dollar amount (D) tinmes 100 plus cent amount (C)

I NPUT portion of the program

If the total (T) is a negative (-) nunber, change it to
positive (+). Dollar amount (D) will equal total (T)

di vided by 100 and restore (add) 326 to it. (This is

how we get back the 326 we subtracted in line 20). Cents
anount becones the remainder (RM |eft over after
dividing by 100. Skips line 60.

Page 9

LINE 60: |If total (T) was not negative (nmeaning over $326
originally), dollar amunt (D) equals total (T) divided
by 100. Cent ampunt (C) equals renminder (RM |eft
over after division.

LI NE 70: The "#1" used in this print statenent is a tab function
telling the conputer how many spaces to place between
the separate types of print. For 3 spaces we would
have used "#3"

Let's ook at alternate ways of storing our check information. Since this is
a "Peek n' Poke Manual" lets do just that!

Renmenber the earlier exercise which uses a "REM' Statenment? Since our BASIC
does not allow ' DATA' Statenents, we have to create our own. This is what we
did with our "Three Voice Misic Assenbler", VOL 1, Issue #3 (March), and al so

the "Connect Four", VOL Il, Issue #1 (August). This is a far nore stable way to
store data than in the string arrays. Also, it is very easy to store on tape.
Let's say we want to store 10 check ampbunts. |INPUT the follow ng changes to

the precedi ng program

2 . 1234567890 23456789012

5 CLEAR FOR P=- 23572TO 24554STEP 2
40 % P)=T; NEXT P

42 FOR P=-24572TO 24554STEP 2

45 T=9% P)

80 NEXT P

Now you can store 10 check in line #8. RUN the program and i nput 10
different dollar and cent values. |If you want to reprint the val ues of these
checks after the program has been run, key in GOTO 42 and hit "GO'.

Page 10

If we wanted to view the checks individually, we would make the foll ow ng
changes:

42 CLEAR: | NPUT "WHAT CHECK # DO YOU W SH TO SEE?(1-10) "N
45 T=9% Nx2+(- 24574))

70 PRINT #1,"CHECK #', N, "=$",D,".",C

80 FOR Z=| TO 2000; NEXT Z; GOTO 42

Now, to view a particular check, you input the nunber between 1 and 10.
The key here is in Line 45, which is doing the foll ow ng:

Whenever you want to add to a negative nunber you decrenent
it: TOTAL = (-24574) PLUS 2 TIMES the nunber of the check

If we wanted Check #2 its nenory | ocation would be: -24574 +
2xN or -24570. CQur first nenory location that we can use on
Line #5 is -24572, the second would be -24570. See, it al
checks out. (LINE 80 is nerely a timng |oop).

Now, lets add a few lines that will give us a total of all the checks:

42 X=0; Y=0; FOR P=-24572TO 24554STEP 2

45 T=%P)

70 X=X+D; Y=Y+C; PRI NT #1,"$",D,".",C
80 NEXT P

90 | F Y>99X=X+Y/ 100; Y=RM

100 PRI NT #1,"TOTAL=$",X ".",Y

Since the conmputer is not aware of the difference between dollars and cents
we nust supply a way of adding these itens separately. W also need a way of
correcting the dollar and cent totals if the cent total exceeds 99

LI NE 42: Let X=Total Dollar Counter; Let Y=Total Cent
Count er

LI NE 70: Add t he individual check amounts (D and C) to the

Page 11

total counters (X and Y)

LI NE 90: If total cents (Y) exceeds 99, divide total cents (Y)
by 100 and add this to total dollar counter (X). Let
total cents (Y) be the renminder (RM of that division

You coul d al so establish 'Payee Codes' and store the 'Payee Nanes' in a REM
Line. Also, the conplete date could be stored in one |ocation: 12/31/1980 woul d
be 12310 (using only the last digit of the year). REMEMBER get as nuch nil eage
as possi ble out of each nenory |ocation

EXAMPLE: We woul d need to know if an individual check has been reconcil ed
with our statement. The easiest way to handle that would be to nmake the date a
negative nunber if the check has been reconcil ed.

I would al so nake the payee code nunber |ocation contain the tax code. Al
of this would not use too nuch nenory:

AMOUNT = 2 bytes
DATE/ RECONCI LE = 2 bytes
PAYEE CODE/ TAX STATUS = 2 bytes

That's only a total of 6 bytes per check

Page 12

MACHI NE LANGUAGE

This manual is not intended as a course in Z80 Machi ne Language or Assenbly
Language. To wite a decent nmachi ne | anguage course woul d occupy the better
part of a year, and subsequently because of its linmted appeal to the average
Bally user be priced totally beyond the value of the information contained.

There are nunerous excell ent paperback books written on that subject.

Cursor does recommend the follow ng books which may be purchased locally at a
conputer store.

Z-80 and 8080 Assenbly Language Programmi ng by Kathe
Sprackl en, published by Hayden (1 SBN 0-8104-5167-0);
Li brary of Congress Catal og Card Nunmber 79-65355 for
approxi mately $8.95.

Z80 Instruction Book by Nat Wadsworth, published by
SCELBI Publications for approximtely $4.95

We strongly suggest you purchase both of these books! [|f they
are not available locally, contact: OPAMP/ TECHNI CAL, 1033 North Sycanore Ave.
Hol | ywood, CA 90038. Tel ephone: (213)464-4322 for mail order service.

The purpose of this portion of the nmanual is too acquaint you with the
met hods required by the Bally for you to utilize your own nmachi ne | anguage
routines. To utilize user-supplied routines you nust adhere to several rigid
rules, the nost inportant of which is:

A MACHI NE LANGUAGE PROGRAM THAT IS USED I N CONJUNCTI ON W TH THE BALLY BASI C
CARTRI DGE MUST BE STORED I N A LOCATI ON THAT W LL NOT | NTERFERE W TH THE BASI C
TEXT! If we were to store a machine | anguage programin the text area (-24576
thru -22777), the BASIC Language would attenpt to interpret our machi ne code as
BASI C, thereby driving you crazy with "Wiat and How' nessages. Therefore, you
nmust find locations that will not interfere.

The easiest to use are the "Tape Input Buffer" (20002 - 20049) and the "Line
I nput Buffer" (20180 - 20283). There is also an 18 byte area (20144 - 20161)
that can be utilized as long as you are not using the OnBoard Cal cul ator routine
(%).

Slightly nore difficult to use would be the "Screen Menory Area" (16384 -
20479). The problemwi th this area is that graphics and text concurrently
occupy

Page 13

the locations. Renenber the "CRITTER' programin the October 1980 issue of
Cursor? When you ran that programyou had an area at the bottom of the screen
that was twi nkling. That was where the Machi ne | anguage program was stored
(19584 thru 19880). This works great, but you cannot put any graphics or text
in the sane area. That is why you had to keep the Cursor fromscrolling down to
that location. |If you were to scroll down there, it would destroy the nmachine

| anguage.

If you check npst of the machine | anguage prograns we have printed, you will
see that we stored themin the Line Input Buffer (20180 thru 20283): February
1980 i ssue of CURSOR page 10, Line 1010 "M=20180"; March 1980 issue page 22
Line 50 "M=20180"; COctober 1980 issue page 71, Line 20 "A=20180". |In each case
the starting location is 20180.

When doi ng Machi ne Language programr ng, we cannot stress enough the
i nportance of a "TI PROGRAMMVER CALCULATOR. " It isn't cheap ($59.00) but it wll
save hundreds of hours of work. Mst of the tine spent in programming is
changing from Binary to Hexadeci mal and Deci mal and back again. By purchasing
this calculator, which is designed exclusively for machi ne | anguage programmers,
you elimnate all that work

The binary form of nunber representation is the basis of conputer
operations. It requires the use of only two digits: 0 and 1. These two digits
are represented by voltages in the conputer, a |low voltage (0) and a high
voltage (1). The following is a representation of the nunbers 0 through 5
written in binary form 0=0, 1=1, 10=2, 11=3, 100=4, 101=5. Notice how rapidly
the nunbers get very long. Let's tackle sone |arger numnbers

In the Deci mal System (base 10) each digit represents a power of 10. For
exanpl e:

423 4 x 100 or 4 x 10"2
2 x 10 or 2 x 1071
3 x1 or 3 x 10"0

+ + 1l

Page 14

Any nunber raised to the O power equals 1, i.e., 20=1, or 160=1, etc.
In the Binary System (base 2), each digit represents a power of 2. For
exanpl e:

1101 = 1 x 2”3 or 1 x 8
+ 1 x 272 or 1x 4
+ 0 x 271 or 0 x 2
+ 1 x 270 or 1x1
Bl NARY 1101 = 13 DECI MAL

So, 1101 in binary is the equivalent of 13 in decinal
Conversi on between the two nunber systens can be done using these rules, but for
our purposes, we would normally convert binary to hexadeci nal

SMALL NUMBER CONVERSI ON TABLE

0

1

2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000

OTMUOWP>POONODUNAWNRO

[EEN

In the hexadeci mal (base 16) nunber system there are 16 different digits.
The digits 0 through 9 are borrowed fromthe decinal systemand |letters of the
al phabet fill in the other six. In the hexadeciml system each digit
represents a power of 16. For exanpl e:

Page 15

1B3 = 1 x 1672 or 1 x 256
+ B x 16”71 or 11 x 16
+ 3 x 1670 or 3 x 1
HEX 1B3 = 435 DECI MAL

PONERS OF 16 CHART

1670 = 1
1671 = 16
1672 = 256
1673 = 4,096
164 = 65,536
Lets convert 2AF3 to decimal. 2AF3 is conposed of four numbers, so we count

down four places on the Powers of 16 Chart for our first nunber:

2 x 163 = 2 X 4096 or 8192
+ A x 162 = 10 x 256 or 2560
+ F x 161 = 15 x 16 or 240
+ 3 x 160 = 3 x 1 or 3
2AF3 HEX = 10995 DECI MAL

I f our hexadeci mal nunber had been 2AF we woul d count down three places on
the powers of 16 chart for our first nunber

2 x 162 = 2 x 256 or 512
+ A x 161 = 10 x 16 or 160
+ F x 160 = 15 x 1 or 15
2AF HEX = 687 DECI MAL

Page 16

To convert deciml to hexadecimal, we divide the decimal nunber by the | argest
power of 16 equivalent that will fit. Exanple: |ets convert 10995 to Hex

4096/ 10, 995
8,192

2,803 renmmni nder

Qur first Hex nunmber is "2". Now divide the renmmi nder by the next |ower power of
16 equival ent:

10

256/ 2803
256

243 remmi nder

Qur second Hex nunber is "A". Looking back on our conversion chart we find 10 =
A. Now we divide the remai nder by the next | ower power of 16 equival ent.

15

16/ 243
16

83
- 80

3 renni nder

Qur third Hex nunmber is "F'. Looking back on our conversion chart we find 15 =
F. Now, our final renminder becomes our fourth Hex number "3"

10995 DECI MAL = 2AF3 Hexadeci mal

All of this has a tendency to overwhel mthe begi nner, but the concepts are

easily grasped if you'll stick with it, the rewards are trenmendous!

There is one additional stickler. OQur BASIC cannot handl e any deci nal nunber
| arger than 32,767. But it can handle the sane nunber in negative form |In
other words, it can handl e the decimal range of -32767 through 32767 which gives
us the full range of 65,536. |If you are going to use a hex nunber |arger than
7FFF it will, when converted to decimal, be |larger than 32767. W must
therefore convert that nunber to a negative nunber that will be accepted by our

conmputer. The easiest way to do that is with the foll ow ng program

Page 17

HEX TO DECI MAL CONVERTER - Note: Renmenber to reverse hex pair
order prior to input.

9 PRINT "HEX # ?",

10 FOR A=1TO 4

20 @A) =KP

30 |IF @A) >471F @A) <58TV=G@A); @A) =@ A) -48; NEXT A
35 IF @A)>641F @A) <7l TV=AA); @A) =@ A) - 55; NEXT A
37 IF @1)<16GOTO 60

40 GOTO 20

60 B=4096; T=0; FOR A=1TO 4

65 |F A=1IF @A) >7G0SUB 100; NEXT A

70 |F A=1IF @A) <8@ !)=@1)xB; T=T+@1) ; NEXT A

75 B=B/ 16; @A) =@ A) xB; T=T+@ A)

80 NEXT A; GOTO 150
| 00 T=-32767;1 F @A) =8RETURN

110 T=T+((@ A) - 8) x4096) - | ; RETURN

150 PRI NT ; PRI NT #1,"DEC. EQUI V=", T

160 GOTO 9

Way On- Board ROM Sub-routines?

We can fairly sinply wite snmall nachine | anguage prograns that will do
anyt hing you want but, |ike any type of program they take up nenory space. W
are very fortunate that a manual exists explaining machi ne | anguage routines
that are built into our unit already. These routines, when properly utilized,
require us nerely to call them Exanple: Page 6, Bally on-Board ROM Sub-
routines, Subroutine #48:

48 026A E,D,CB,L,H SCROLL
Bl ock noves. Moves C bytes from (HL+DE) to (HL).
Increments HL by DE and repeats B tines.

Lets look at the first line: '"48" is the sub-routine nunber. '026A is the
hexadeci mal address of this subroutine (618 decinmal). 'E D/ CB,L,H, are the
Z80 registers that nust be utilized and the order in which they nust be | oaded.
Looking at this again we will be using registers DE, C, B, HL.

Whenever we use a nmachi ne | anguage routine, we nust use a "CALL" to tell the
conmputer where to go and also to notify it that the information will not be in
BASI C. Sometines, when using a CALL, the conputer can't find its way back,

Page 18

and your keyboard will |ock up and do funny things. For this reason, it is
usual ly wise to "SAVE THE BASI C PO NTER' as the very first thing, and "RETURN TO
BASI C' as the |ast.

Let's put together a nmchine | anguage program using the scroll Subroutine

#48. First we will wite the programin nmachi ne | anguage (OP Code).
OP CODE ASSEMBLY LANGUAGE COVMVENTS
D5 PUSHD Save Basi c Pointer
FF RST 56 On Board Subroutine Notification
31 Subroutine 48 + 1 Converted to Hex

Lets | ook again at the subroutine: it is saying that HL nust be | oaded with

the screen address of the first Iine we want to scroll. Please refer to the DVA
GRAPHI CS article on page 25 of the April/Muy issue for an explanation of screen
address locations. | selected 18424 as the location | wanted.

Qur subroutine says it increnents HL by DE. That nmeans the increment is to
be stored in DE. Well, we want to scroll in one line increnents, and referring
back to the April/May article we know that one full line on our TV is 40 bytes.

Therefore, we know that we want 18424 in HL and 40 in DE.

Looki ng back at our subroutine it says "Mwves C bytes from(HL + DE) to HL".
Therefore, 'C would have to contain the nunber of bytes on a |line you want to
nmove. Let's nove half a line. Half of 40 is 20. Therefore 'C nust contain
20.

Now for the last leg. Refer back to the subroutine: "Repeat B tinmes".
Therefore, 'B" would be the total nunmber of lines we want to nove upward. In
this case let's nove 20 lines.

OKI' HL = 18424; DE = 40; C =20; B = 20. Now we have to convert these
deci mal val ues to hexadeci nal

HL = 47F8; DE = 28; C = 14; B = 14
Several nore items of necessary information before we proceed.

HL and DE are register pairs. A "register pair" is a conbination of two
registers. HL = Hand L; DE = D and L. The purpose is to allow | arger nunber

Page 19

handl i ng capability. Referring back to the subroutine, it gave us the register
| oad order (sequence): E/ D CB,L,H

This means we nust split apart DE and HL. Lets load DE first. Renenber,
DE=28. Each single register can handl e a naxi num of 2 hex nunbers. In the case
of DEit already is two nunbers so let's proceed with 00. DE=0028. Therefore,
E=28, D=00. Getting back to our program

D5 Save Basic Pointer

FF Cal | Subroutine nunber
31 48

28 E Regi ster

00 D Regi ster

14 C Regi ster

14 B Regi ster

Next cones HL. The subroutine tells us to | oad HL backwards as we | oaded
DE, so, HL=47F8 becones F8 47

F8 L Regi ster

47 H Regi ster

Dl POP DE; Put Basic Pointer Back
9 Return; Go Back to Basic

Next, we nust convert these Hex pairs to Hex bytes (4 at a tine) and then
convert Hex bytes to Decimal by using the Hex to Decimal Converter program To
get Hex bytes we nust first reverse their order

HEX PAI RS HEX BYTES DECI MAL
DF FFD5 - 43
FF
31 2831 10289
28
00 1400 5120
14
14 F814 -2028
F8
47 D147 - 11961
D
9 00C9 201

Page 20

Notice the "00" in the last line. W had to add zeroes so it would fill in
the space. 00 in assenbly | anguage i s known as "NOP", which means 'No Op' (No
Operation); in other words-- nothing.

We converted the Hex to Deci nal because our conputer can't understand the
Hex Code. Ah, soneday..

In previous pages we discussed the |ocations we can store a nmachi ne | anguage
program Now, we will discuss howto get it in there.

We will store our programin the Line Input Buffer starting at 201 80. Look
at our compl ete program now

1010 M=20I 80; B=M C=I 090

1020 L=-43;G0SUB C

| 030 L=10289; GOSUB C

| 040 L=5120; GOSUB C

1050 L=-2028; GOSUB C

1060 L=-11961; GOSUB C

1070 L=-201; GCsuB C

1080 FOR A=l tol 4; CALL B; NEXT A; STCP
1090 % M =L; M=M+2; RETURN

Lets run through this programthe sane way the conmputer will: Nothing
happens until we get to 1020, we GOSUB C, which is Line 1090. 1090 says:

Poke Location Mwith the Value of L, then increment M by 2 and return
This goes on through line #1070 thusly:

9% 20180) =- 43

9% 20182) =10289
% 20184) =5120
9% 20186) =- 2028
9% 20188) =- 11961
9% 20190) =- 201

Then we go to Line 1080. 1In this case, we want to CALL this Subroutine 14
times and then STOP. Notice we are using the Variable B, which gives the
begi nning |l ocation of OUR Subroutine. "M wouldn't help us at all because we
were incrementing 'M.

Page 21

If you are still sonmewhat confused don't feel alone. The nore you reread,
and work with the exanples we print in our issues, the clearer it will becone.

I NTERRUPT HANDLI NG

This is a sonewhat nore conplex area to handle. |If you are a total
begi nner, this section nmay appear to be gobbl edy-gook. However, if you buy the
books we have recommended and do the exercises in our issues and manual s, you
will come to an understanding. Conputer Programming is |ike any ot her endeavor,
YOU MUST LEARN TO WALK BEFORE YOU RUN.

OUTPUT PORT D (HEX) (13 DECI MAL) | NTERRUPT FEEDRACK

This Port works with the M instructions to place on the data bus at each
interrupt, the data that is sent out to this port.

In nost Z80 applications IM2 is used to determ ne where to go for a device
interrupt. The Bally uses it to generate a location to go to at each screen
interrupt. L

When the Z80 receives an INT fromthe Address Chip, it looks to the "I
register for the high order byte (or page) and to the data bus for the | ow order
byte, of the address for the interrupt vector. This interrupt vector points to
the interrupt processing routine. Only the upper 4 bits are used in respondi ng
to a Light Pen interrupt.

EXAMPLE | M2 | NTERRUPT. This exanple is what the BASIC really does. BASIC s
interrupt routine is at 20BO (hex).

Page 22

St ack
+----+

| PC| <-
oot

Di agram of I M 2 | NTERRUPT

Pushes (1) Produces Interrupts
Program +----- + . R R R LR +
Counter | | I NT | |
—————————— + 280 | <-------------------+ Address Chip |
I I I I
5 o e a o - +
Reg. (3) (2) R +
_____ + +----+ Data Bus | |
20 +----- > | <----- + 62| <--------- + Data Chip |
----- + +--- -t | [
| e e e e a i aa s +

I
| Data Chip places val ue out put
| to port D (hex) on Data Bus

| Z80 goes to 2062 for |
| interrupt vector |

Fom e oo m oo oo +
I
I
\Y,
-------- +
| +--(6) Start of Interrupt
-------- + (5) | Processi ng
20B0 | o + o> Ao mm - +
-------- + | Transfers +----->1] 20BO |
+----- > | controls to | oo +
-------- + | this location | | . |
| o e e oo o + S, +
-------- + | |
| Fomm e m e o - +
-------- + L
A +
+-> | RET | |
| E S +

+--(7) Replace PC from
stack and return
to Interrupt
Program

Page 23

OUTPUT PORT E (HEX) (14 DECI MAL) | NTERRUPT MODE:

The value output to this part determ nes what type of interrupt is to occur.
There are two types of interrupts: Screen Interrupts and Light Pen Interrupts.

The Screen Interrupt is used to synchronize the software with the video
di splay. The Screen Interrupt is the INT Signal sent to the Z80. The Screen
Interrupt occurs when the video system conpletes scanning the line in the
interrupt line register (output port F (HEX)). This interrupt can be used for
timng since each line is scanned 60 tines a second.

By witing your own interrupt routines and using the 'I' register and output
port D (HEX) to point to it you can put up to 256 different colors on the screen
by changing the color registers each interrupt.

The Light Pen Interrupt occurs when the Light Pen Interrupt node is set and
the light pen is triggered and the video scan crosses the point on the screen
where the light pen is.

There are two nodes for both the Screen Interrupt and Light Pen. 1n node
"0" the customchips will continue to try to interrupt the Z80 until it finally
acknow edges the interrupt. In Modde '1' the customchips give up if the Z80 does
not acknow edge it by the next instruction. Both interrupts can occur if both
are set, but the screen interrupt has priority.

I NTERRUPT CONTROL BI TS

PORT E (Hex) bits Bit Bit O - Light Pen Mbde (O or 1)
7 6 5 4 3 2 1 0 Bit 1 - Light Pen Interrupt Enable (1 for
e it S e e S i enabl ed

| | | | | | | | | Bit 2 - Screen Interrupt Mde (0 or 1)
oot H---4---+---+ Bit 3 - Screen Interrupt (1 for enabl ed)

Page 24

You can see fromthis (refer to I NTERRUPT CONTROL BI TS chart page 23) that
if you want just a Screen Interrupt in Mode O (nust interrupt) w thout the Light
Pen, you would just set bit 3 and the decinal value would be 8. This is why 8
is always output to Part E in the ganmes and i n BASI Cl

OUTPUT PORT F (HEX) (15 DECI MAL) | NTERRUPT LI NE:

The value output to this port deternm nes when a screen interrupt (INT to
Z80) occurs. In our low resolution systemonly bits 1 - 7 are used with bit O
set to zero. In low resolution there are 102 lines of 40 bytes with 16 bytes
| eft over. Since the custom chips were designed to operate in a high resolution
node they scan 204 lines. This neans that for every line of |ow resolution that
is scanned 2 lines of high resolution were scanned. Since the reference for
Port F (HEX) is for high resolution, we have to nultiply the nunber of lines in
|l ow resolution by two for the value we output to the port. This is why bit zero
is set to zero and we only use bits 1 - 7.

When the custom chi ps have finished scanning the nunber of lines output to
Port F (HEX) a screen interrupt is generated. Each line is scanned 60 tinmes a
second and there are 256 lines per frame so 15,6360 |lines are scanned per second.
If you divide output Port F (HEX) by 15,360 you will get the tine in seconds
between interrupts. EXAVPLE
PORT F = 200 I|ines 200/ 15360 = . 013 seconds between
interrupts or 13
m | 1iseconds.

OUTPUT PORT C (HEX) (12 DECI MAL) THE MAG C REG STER:

When an On-Board WRI TE Routine calls for a MAG C REG STER val ue, this means
that it is to nodify the data before placing it in menory. This is valid only
if the "wite' is fromO to 16K Wat happens is, you wite to a |ocation
between 0 and 16K. In our |low resolution systemthis only works fromO to 4K
since we only have 4K of nenory.

Page 25

FUNCTI ONS SET BY MAG C REG STER SETS

Bit O - LSB of shift anpunt
7 6 5 4 3 2 1 0 Bit 1 - MSB of shift anpunt
Fooe e+ --+---+---+ Bit 2 - Rotate
I I I I I I I I | Bit 3 - Expand
o e m et H---+---+ Bit 4 - OR
Bit 5 - XOR
Bit 6 - Flop

NOTE: Low resol uti on DOES NOT all ow use of rotate.

As many as four functions can be done at once. Order of operation is as
fol |l ows:

1. Expansion
** 2. Rotating and Shifting ** NOTE: Rotate and Shift, and
3. Fl opping OR and XOR, CANNOT be
** 4. OR and XOR set at the sane tine.

I NPUT PORT 8 (HEX) (8 DECI MAL) | NTERRUPT FEEDBACK REG STER:

This is an INPUT function. By looking at this register after an OR or XOR
has been perforned we can determne if we have witten on top of sonething and
al so where.

A'1 in the intercept register neans we have witten on top of sonething.
Bits 0 - 3 give information for all OR or XOR Wites since the last input from
the intercept register resets these bits. This neans every tine sonething is
written into menmory using an OR or XOR a check is nade to see if the Wite
occurred over other data, if so, Port 8 (HEX) bits O - 3 are reset to zero.

Page 26

I NTERCEPT FEED BACK BI TS

Bit O - Intercepts in pixel #3 in
an OR or XOR Wite since
| ast reset

7 6 5 4 3 2 1 0 Bit 1 - Sane as bit 0 for #1
to-o oo oo oo -4 --+---+ Bit 2 - Sane as bit 0 for #2
| | | | | | | | | Bit 3 - Sane as bit 0 for #3
Fo-e oo - e e oo+ --+---+ Bit 4 - Intercept is pixel #3 in
last OR or XOR Wite
Bit 5 - Sane as Bit 4 for #2
Bit 6 - Sane as Bit 4 for #3
Bit 7 - Sane as Bit 4 for #4
Bi t
R Byte --------- | ---+
Rel ati on between byte,, bit and + +---4---d4---dtdoo b+ V-4
Pi xel. NOTE: A word is two bytes +- | | | | | | | | | -+
T S L e S
Pi xel | #3 | #2 | #1 | #0 |
\ /

Pi xel

Page 27

On this page in the original version of the Peek 'n Poke manual there is a
Machi ne Language listing of "Critter' from page 66 of the October issue of the
Cursor newsletter here; it's now in Appendix one. Critter is a programwitten

for the original version of Bally BASIC. It is a small subroutine called from
BASI C t hat npbves an object around with no blinking. It uses the sane routines
that the cartridges use to achieve this effect.

The original listing was typed by hand, so there were nunerous errors (the
program was also a bit light on conments too). | have retyped the source for
Critter so that it can be assenbled using the freely distributable assenbl er
called Zmac. | had two objects in mnd when I did this: one, the program

listing is free of typing errors, and two | added comments so that anyone with
the '"Nutting' Manual can follow the code.

ASCl | Conversion Chart

ASCI | Char ASCI | Char ASCI | Char ASCI | Char ASCI | Char
13 GO 47 / 64 @ 81 Q 98 x (Mult)
31 ERASE 48 0 65 A 82 R 99 [(Divide)
32 SPACE 49 1 66 B 83 S 104 LI ST
33 ! 50 2 67 C 84 T 105 CLEAR
34 " 51 3 68 D 85 U 106 RUN
35 # 52 4 69 E 86 \Y, 107 NEXT
36 $ 53 5 70 F 87 w 108 LI NE
37 % 54 6 71 G 88 X 109 I F
38 & 55 7 72 H 89 Y 110 colle
39 ' 56 8 73 I 90 z 111 GOSsuUB
40 (57 9 74 J 91 [112 RETURN
41) 58 : 75 K 92 \ 113 BOX
42 * 59 ; 76 L 93] 114 FOR
43 + 60 < 77 M 94 Up 115 I NPUT
44 , 61 = 78 N 95 Left 116 PRI NT
45 - 62 > 79 o 96 Down 117 STEP
46 . 63 ? 80 P 97 Ri ght 118 RND
119 TO

Note: ASCII 94 through 97, the characters are arrows of description

Menory Map

Deci mal

On Board ROM 0 - 8191

Bal |y Basi c ROM 8192 - 12287

Screen Menory Area 16384 - 20479

Bal |y Basic Graphics/ 16384 - 19983
Program ar ea
Bal |y Basic Scratchpad 20000 - 20463

Tape | nput Buffer 20002 - 20049

Vari abl es begin at 20078

Li ne I nput Buffer 20180 - 20283
(104 Characters)

Stack Area 20284 - 20462

Text Area - 24576 - -22777

Not e Lookup Tabl e 12046

Speci al acknow edgenment to: M. Brett Bilbrey for his contribution of
information to this manual

Page 28

Appendi x A

and Paste purposes,

eoNoOORLNRE

16: 0006
17: 0008
18: 003E

20: 4C80
21: 4C80
22: 4C81
23: 4C82
24: 4C84
25: 4C86
26: 4C88
27: AC8BA
28: 4C8B
29: 4C8C

31: 4CEO
32: 4CEO

34: A4CES
35: 4CES3
36: 4CE6
37: 4CE7Y
38: 4CEB
39: 4CEE
40: A4CEF
41: 4CFO
42: 4CF1
43: 4CF2
44: ACF4
45: ACF6
46: ACF8
47: 4CFB

- Critter Listing

This is the Assenbly listing for Critter. 1t's called CRITTERP.LST. For Copy
Appendi x B hol ds the actual source code.
Critter - For the Bally Astrocade
File Name: CRI TTERP. ASM
Version 1.1 - February 12, 2002
This source is as it appears in the PEEK N POKE
manual . It has only been changed so that it
assenbl es under Zmac; the Z80 code it generates is
EXACTLY the same. Note that Critter does not run
wi thout the first version of Bally BASIC, Critter
does NOT run under Astro BASIC (it needs vector nod-
ifications).
Conpil e with:
Zzmac -i -m-o0 critterp.bin -x critterp.lst critterp.asm
MCALL EQU $06
MRET EQU $08
VECT EQU $3E
ORG $4C80
F3 DI
D9 EXX
3E4C LD A $4C
ED47 LD |I,A ;Load | with page of interrupt vector
3EEOQ LD A $EO
D30D OUT ($0D), A ; Load custom chips with line of
D9 EXX ; interrupt vector
FB El
Cc9 RET
ORG $4CEO0
E34C DW $4CE3 ; Points to interrupt routine
ORG $4CE3
CDB020 CALL $20BO ; Call Bally's interrupt routine
F3 DI
ED73704C LD (%4C70),SP ; Save SP
31704C LD SP, $4C70 ; Move SP
F5 PUSH AF
C5 PUSH BC
D5 PUSH DE
E5 PUSH HL
DDES PUSH | X
FDE5S PUSH 1Y
DB1C IN A ($10 ; Get KN(1) val ue
323A4D LD ($4D3A),A ; Place in vector block
FF RST $38 ; On-board call
00 DB $00 ; Routine 01 - Start Miultiple Calls

48: 4CFC

49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
17:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:

4CFD
4CFE
4D00
4D01
4D03
4D05
4D06
4D08
4D09
4D0B
4D0D
4DOE
4DOF
4D10
4011
4D15
4D16

4D18
4D18
4D19
4D1B
401D

4D20

4D20
4D22
4D24
4D26

4D28
4D2A
4D2C
4D2E
4D30
4D32
4D34
4D36

Page 29

07 DB MCALL+1 ; Call V Wite Routine
184D DW VMR TE
3F DB VECT+1 ; Move vector (see ROM nmnual)
384D DW VBLOCK ; Vector Block Address
204D DW LIMTS ; Limt Table
07 DB MCALL+1 ; Call V Wite Routine
184D DW VR TE
02 DB $02 Routine 02 - End Multiple Calls
FDE1 POP 1Y
DDE1 POP 1IX
El POP HL
D1 POP DE
c1 POP BC
F1 POP AF
ED7B704C LD SP,($4C70) ; Return SP
FB El
C9 RET
ORG $4D18
1F VARI TE: DB $1F ; Routine 30 - WARITR
384D DW $4D38 ; Vector
244D DW $4D24 ; Pattern
08 DB MRET
ORG $4D20
Limit Table
Note: This part of the source doesn't match the M.
l'isting. had to fudge it to make it match;
because of this, | have typed, but commented
out, the four lines of "weird M listing.
Notice that the assenbly hex codes are reverse
ordered; this is how the manual lists the lines.
00 98 DW 152 ;X boundari es
00 40 DW 64 ;Y boundari es
00 00 DW ; (0,0) Position
02 08 DW 520 ; 2 byte, 8 line pattern size
0098 LIMTS: DB 00D, 152D ; X boundari es
0040 DB 00D, 64D ;Y boundari es
0000 DB 00D, 00D ; (0,0) Position
0208 DB $02, $08 ; 2 byte, 8 line pattern size
Critter pattern
0AA0 DW $A00A
2288 DW $8822
AAAA DW $AAAA
2AA8 DW $A82A
0820 DW $2008
2008 DW $0820
0820 DW $2008
0000 DW $0000

Page 30

101: ; VECTOR BLOCK (See 'Nutting' ROM Manual, page 39-41)
102: 4D38 20 VBLOCK: DB $20 ; Magi c Register val ue
103: 4D39 80 DB $80 ; Vector Status
104: 4D3A 00 DB $00 ; Time Base - Holds KN(1) val ue
105: 4D3B 0500 DW $0005 ; Delta X
106: 4D3D 0000 DW $0000 ; X Position
107: 4D3F 03 DB $03 ; X Checks Mask -Bounce off walls
108: 4D40 0500 DW $0005 ; Delta Y
109: 4D42 0000 DW $0000 ; Y Position
110: 4D44 03 DB $03 ;Y Checks Mask -Bounce off walls
****x work\critterp.asm****
Statistics:
6 synbol s
110 byt es
Synbol Tabl e:
limts 4d20 vbl ock 4d38
ncal | = 6 vect = 3e
nr et = 8 vwite 4d18

Page 31

Appendi x B - Bally BASIC version of Critter

This is the original "Critter" program (and article) as printed in the Cctober
1980 i ssue of the Cursor newsletter (Vol.2, pg. 66-67). This article (which is
NOT included in the original PEEK n' POKE nanual) is included here because this
is the exact programas in Appendix A but with a BASIC | oader to get the
programinto nenory. After the programis run, the Astrocade hol ds EXACTLY the
sanme data in the EXACT sanme nmenory |ocations as the assenbled Z80 code in
Appendi x A

Critter
By Brett Bil brey

This programwi ||l place a Space | nvader type "CRITTER' on the screen that will
bounce fromtop to bottom and side to side w thout disturbing anything that is
al ready on-screen. This "CRITTER" will run independent of anything else you
wish to do. If you press "HALT," he won't! His speed is controlled by Hand
Control Knob #|.

After you have "RUN' this program do NOT scroll to the bottomline! Use
"CY=40" to keep any text away fromthe area in the bottom of the screen that is
"twi nkling" (also, do not use "CLEAR").

Once the BASIC program has been "RUN," it can be erased and replaced with

what ever you want. Use ":RETURN' to stop the routine, and "CALL 19584" to start
it up again. One problemis that when BASIC tries to print on top of the
"CRITTER, " sone snmll screen glitches appear. You can create an invisible
screen by altering the value of Port 15 (&(15) Interrupt Line Port). It is set
to 99 which is the mninumsize of invisible screen. The Interrupt Line Port
determ nes the nunber of |ines scanned before the next interrupt (for a conplete
explanation of all the interrupt ports etc., refer to CURSOR "PEEK n' POKE"
manual . To give you an exanple of a use for this type of routine, input the
following Iine after you have "RUN' the program key-in ":RETURN' and hit "GO
before you key in the line:

1 CALL 19584; &(15)=99; | NPUT A; : RETURN ; STOP

As you know, when the conputer hits an "I NPUT" command, it will just sit there,
waiting for you to give it a value, it will not allow anything el se to happen
until you key in a value. Wth this one line program it will start the

"CRI TTER' bouncing around the screen as soon as it hits the input line and wll
stop the "CRITTER'" as soon as you input a val ue.

"So what," you ask? Well, instead of having a "CRITTER, " we could have a cl ock
decrenmenting fromone nnute. |If you don't get your answer into the conputer
before the clock hits zero, you |ose your turn and control switches to the next
pl ayer. This would provide for truly sophisticated software. So, don't |ose
heart, we are on the opening stages of an exciting software era.

Brett notes that he received a great deal of help from Tom Wod, Dave |bach, and
John Perkins, wthout whose help he doubts he could have witten this program

Pag

"Cr

10
20
30
40
50
60
70
80
90
| 00
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

e 32

itter"

CLEAR ; &(15) =99
A=l 9584; B=A; C=640
D=- 9741; GOSUB C
D=19518; GOSUB C
D=18413; GOSUB C
D=- 8130; GOSUB C
D=3539; GOSUB C
D=- 1063; GOSUB C
D=201; GOSUB C
A=19680
D=19683; GOSUB C
A=19683
D=- 20275; GOSUB C
D=- 3296; GOSUB C
D=29677; GOSUB C
D=19568; GOSUB C
D=28721; GOSUB C
D=- 2740; GOSUB C
D=-10811; GOSUB C
D=-8731; GOSUB C
D=- 539; GOSUB C
D=- 9243; GOSUB C
D=12828; GOSUB C
D=l 9770; GOSUB C
D=255; GOSUB C
D=6151; GOSUB C
D=16205; GOSUB C
D=19768; GOSUB C
D=19744; GOSUB C
D=6151; GOSUB C
D=589; GOSUB C
D=- 7683; GOSUB C
D=- 7715; GOSUB C
D=- 11807; GOSUB C
D=- 3647; GOSUB C
D=31725; GOSUB C
D=19568; GOSUB C
D=- 13829; GOSUB C
A=19736
D=14367; GOSUB C
D=9293; GOSUB C
D=2125; GOSUB C
D=19744
A=- 26624; GOSUB C
D=16384; GOSUB C
D=0; GOSUB C
D=2050; GOSUB C
D=- 24566; GOSUB C
D=- 30685; GOSUB C
D=- 21846; GOSUB C
D=- 22486; GOSUB C

520
530
540
550
560
570
580
590
600
610
620
630
640

D=8200; GOSUB C
D=2080; GOSUB C
D=8200; GOSUB C
D=0; GOSUB C

D=- 32735; GOSUB C
D=1280; GOSUB C
D=0; GOSUB C
D=768; GOSUB C
D=5; GOSUB C

D=0; GOSUB C

D=3; GOSUB C

CALL B; STOP

% A) =D; A=A+2; RETURN

Page 33

Page 34

Appendix C - Critter Source

This is the Assenbly source for Critter (it's called CRITTERP.ASM. It is

i ncl uded for Copy and Paste purposes, therefore there are no page nunbers on
these pages. Copy the file, nake changes (if you want) and then assenble it
using Zmac. As noted in the source code, Critter is not executable w thout
BASIC, so don't expect it to run as a cartridge.

; Critter - For the Bally Astrocade
; File Nane: CRITTERP. ASM
; Version 1.1 - February 12, 2002

; This source is as it appears in the PEEK N PCKE

; manual . It has only been changed so that it

; assenbl es under Znac; the Z80 code it generates is

; EXACTLY the sane. Note that Critter does not run

; wWithout the first version of Bally BASIC, Critter

; does NOT run under Astro BASIC (it needs vector nobd-
; ifications).

; Conpile wth:
; zmac -i -m-o0 critterp.bin -x critterp.lst critterp.asm

MCALL EQU $06
MRET EQU $08
VECT EQU $3E

ORG $4C80

D

EXX

LD A $4C

LD I,A ;Load I with page of interrupt vector
LD A $EO

oUT ($0D), A ; Load custom chips with line of
EXX ; interrupt vector

E

RET

ORG $4CEO0
DW $4CE3 ; Points to interrupt routine

ORG $4CE3

CALL $20BO ; Call Bally's interrupt routine
D

LD (%$4C70),SP ; Save SP
LD SP, $4C70 ; Move SP
PUSH AF

PUSH BC

PUSH DE

PUSH HL

PUSH | X

PUSH 1Y

VWRI TE:

Limt
Not e:

00 98
00 40
00 00
02 08

LIMTS:

IN A ($10 ; Get KN(1) val ue
LD ($4D3A),A ; Place in vector block

RST $38 ; On-board call

DB $00 ;Routine 01 - Start Multiple Calls
DB MCALL+1 ; Call V Wite Routine

DW VWRITE

DB VECT+1 ; Move vector (see ROM nmnual)
DW VBLOCK ; Vector Block Address

DW LIMTS ; Limt Table

DB MCALL+1 ; Call V Wite Routine

DW VWRITE

DB $02 ; Routine 02 - End Multiple Calls
POP 1Y

POP 1 X

POP HL

POP DE

POP BC

POP AF

LD SP, ($4C70) ; Return SP

El

RET

ORG $4D18

DB $1F ; Routine 30 - WARITR

DW $4D38 ; Vector

DW $4D24 ; Pattern

DB MRET

ORG $4D20

Tabl e

This part of the source doesn't match the ML
listing. | had to fudge it to make it match;
because of this, | have typed, but comrented

out, the four lines of "weird M listing.
Notice that the assenbly hex codes are reverse

Critter pattern

ordered; this is how the manual lists the |ines.
DW 152 ;X boundari es
DW 64 ;Y boundari es
DW 0 ; (0,0) Position
DW 520 ; 2 byte, 8 line pattern size
DB 00D, 152D ;X boundari es
DB 00D, 64D ;Y boundari es
DB 00D, 00D ; (0,0) Position
DB $02, $08 ; 2 byte, 8 line pattern size
DW $A00A
DW $8822
DW $AAAA
DW $A82A
DW $2008
DW $0820
DW $2008

DW $0000

; VECTOR BLOCK (See 'Nutting' ROM Manual, page 39-41)

VBLOCK: DB
DB
DB
Dw
Dw
DB
Dw
DW
DB

$20
$80
$00
$0005
$0000
$03
$0005
$0000
$03

1

Magi ¢ Regi ster val ue

Vect or Status

Ti ne Base - Hol ds KN(1) val ue
Delta X

X Position

X Checks Mask -Bounce off walls
Delta Y

Y Position

Y Checks Mask -Bounce off walls

	Peek n' Poke Manual, by Brett Bilbrey, Edited by Cursor Group, 1980

